
- •Определение эконометрики, задачи эконометрики, этапы эконометрического исследования
- •Спецификация модели и метод выбора парной регрессии
- •Метод наименьших квадратов
- •Свойства оценок метода наименьших квадратов
- •Оценка существенности парной линейной регрессии
- •Оценка существенности параметров уравнения одинаковые
- •Линейный коэффициент корреляции. Коэффициент детерминации. Значимость линейного коэффициента корреляции
- •Интервальный прогноз по линейному уравнению регрессии
- •Нелинейная регрессия. Классификация, примеры моделей
- •Степенная регрессия
- •Показательная регрессия
- •Гиперболическая регрессия
- •Гиперболическая регрессия одинаковые
- •14. Средняя ошибка аппроксимации
- •15. Коэффициент эластичности
- •17. Спецификации модели и методы построения уравнения множественной регрессии
- •18. Оценка параметров уравнения множественной регрессии.
- •19. Стандартизованный коэффициент регрессии
- •20. Множественная корреляция
- •21. Выбор формы уравнения множественной регрессии
- •22. Частный коэффициент корреляции
- •23. Оценка надежности результатов множественной регрессии и корреляции.
- •24. Предпосылки мнк
- •25. Автокорреляция в остатках. Методы оценивания
- •26. Суть и последствия гетероскедастичности
- •27. Методы обнаружения гетероскедастичности
- •28. Омнк
- •29. Сущность и признаки мультиколлинеарности, ее последствия
- •30. Методы устранения мультиколлинеарности
- •31. Фиктивные переменные, их использование в сезонных исследованиях
- •32. Как интерпретируются коэффициенты при фиктивных переменных
- •33. Временные ряды. Классификация.
- •34. Компоненты временного ряда. Уровни временного ряда
- •35. Понятие тренда, его компоненты, анализ.
- •36. Моделирование сезонных и циклических колебаний
- •37. Автокорреляция временных рядов. Коэффициент корреляции. Лаг.
- •38. Методы обнаружения автокорреляции. Критерий Дарбина-Уотсона
- •Ограничения коэффициента ранговой корреляции
- •39. Методы обнаружения автокорреляции. Критерий Спирмена
- •Ограничения коэффициента ранговой корреляции
- •40.Системы эконометрических уравнений
- •41. Проблема идентификации
- •42. Структурная и приведенная формы модели.
- •43.Идентификация модели. Проблема идентификации.
- •44. Оценивание параметров структурной модели.
- •45. Косвенный метод наименьших квадратов
- •46. Двухшаговый метод наименьших квадратов
Оценка существенности парной линейной регрессии
Оценка существенности параметров уравнения одинаковые
Оценка значимости уравнения регрессии в целом дается с помощью F-критерия
Фишера. При этом выдвигается нулевая гипотеза, что коэффициент регрессии равен
нулю, т. е. b = 0, и следовательно, фактор х не оказывает
влияния на результат у.
Непосредственному расчету F-критерия предшествует анализ дисперсии.
Центральное место в нем занимает разложение общей суммы квадратов отклонений
переменной у от средне го значения у на две части -
«объясненную» и «необъясненную»:
-
общая сумма квадратов отклонений
-
сумма квадратов
отклонения объясненная
регрессией
- остаточная сумма квадратов отклонения. |
Любая сумма квадратов отклонений связана с числом степеней свободы, т.
е. с числом свободы независимого варьирования признака. Число степеней свободы
связано с числом единиц совокупности nис числом определяемых по ней констант.
Применительно к исследуемой проблеме число cтепеней свободы должно показать,
сколько независимых отклонений из п возможных требуется для
образования данной суммы квадратов.
Дисперсия на одну степень свободы D.
F-отношения
(F-критерий):
Ecли нулевая гипотеза справедлива, то факторная и остаточная дисперсии не
отличаются друг от друга. Для Н0 необходимо опровержение, чтобы
факторная дисперсия превышала остаточную в несколько раз. Английским
статистиком Снедекором разработаны таблицы критических значений F-отношений
при разных уровнях существенности нулевой гипотезы и различном числе степеней
свободы. Табличное значение F-критерия — это максимальная величина отношения
дисперсий, которая может иметь место при случайном их расхождении для данного
уровня вероятности наличия нулевой гипотезы. Вычисленное значение F-отношения
признается достоверным, если о больше табличного. В этом случае нулевая
гипотеза об отсутствии связи признаков отклоняется и делается вывод о
существенности этой связи: Fфакт > Fтабл Н0
отклоняется.
Если же величина окажется меньше табличной Fфакт ‹, Fтабл
, то вероятность нулевой гипотезы выше заданного уровня и она не может быть
отклонена без серьезного риска сделать неправильный вывод о наличии связи. В
этом случае уравнение регрессии считается статистически незначимым. Но
не отклоняется.
Стандартная ошибка коэффициента регрессии
Для оценки существенности коэффициента регрессии его величина сравнивается с
его стандартной ошибкой, т. е. определяется фактическое значение t-критерия
Стьюдентa:
которое
затем сравнивается
с табличным значением при определенном
уровне значимости
и числе степеней свободы (n- 2).
Стандартная ошибка параметра а:
Линейный коэффициент корреляции. Коэффициент детерминации. Значимость линейного коэффициента корреляции
Парный линейный коэффициент корреляции. С помощью парного линейного коэффициента корреляции измеряется теснота связи между двумя признаками.
Линейный коэффициент корреляции изменяется в пределах от —1 до +1. Равенство коэффициента нулю свидетельствует об отсутствии линейной связи. Равенство коэффициента —1 или +1 показывает наличие функциональной связи. Знак «+» указывает на связь прямую (увеличение или уменьшение одного признака сопровождается аналогичным изменением другого признака), знак «—» — на связь обратную (увеличение или уменьшение одного признака сопровождается противоположным по направлению изменением другого признака).
Коэффициент детерминации ( — R-квадрат) — это доля дисперсии зависимой переменной, объясняемая рассматриваемой моделью зависимости, то есть объясняющими переменными. Более точно — это единица минус доля необъяснённой дисперсии (дисперсии случайной ошибки модели, или условной по факторам дисперсии зависимой переменной) в дисперсии зависимой переменной. Его рассматривают как универсальную меру зависимости одной случайной величины от множества других. В частном случае линейной зависимости является квадратом так называемого множественного коэффициента корреляции между зависимой переменной и объясняющими переменными. В частности, для модели парной линейной регрессии коэффициент детерминации равен квадрату обычного коэффициента корреляции между y и x.
Проверка значимости парного линейного коэффициента корреляции. Коэффициенты корреляции, как правило, рассчитываются для выборочных данных. Чтобы распространить полученные частные результаты на генеральную совокупность, приходится допустить некоторую ошибку, которую можно оценить с помощью средней квадратической ошибки. Средняя квадратическая ошибка для парного линейного коэффициента корреляции достаточно большой выборки вычисляется по формуле
где ρ — коэффициент корреляции генеральной совокупности; n — объем выборки.
В математической статистике доказано, что если признаки х и y распределены по нормальному закону, то в достаточно больших выборках коэффициенты корреляции можно считать распределенными нормально со средним значением ρ и средним квадратическим отклонением σr(нормальное распределение рассмотрено в гл. 4). Этот факт используется для построения доверительных интервалов коэффициента корреляции в генеральной совокупности, а также для проверки значимости выборочных коэффициентов корреляции, т. е. для проверки того, могло ли данное значение r получиться в выборке из некоррелированной генеральной совокупности (ρ=0) в силу простой случайности.
Очевидно, чем больше отклонение r от ρ, тем менее вероятно, что оно случайно.