- •5) Составные части электрической цепи и схемы. Законы Кирхгофа.
- •9) Расчет сложных цепей с помощью законов Кирхгофа
- •Методы расчета нелинейных цепей
- •23) Индуктивный элемент в цепи синусоидального тока.
- •26) Рабочие и механические характеристики асинхронного двигателя
- •1.5 Механическая характеристика асинхронного электродвигателя
- •30) Регулирование скорости асинхронного двигателя изменением числа пар плюсов
- •36) 10.19. Однофазные асинхронные двигатели
- •Основы символического метода расчета цепей синусоидального тока.
- •Получение трехфазного тока
- •Соединение трехфазной цепи звездой
- •Векторная диаграмма линейных и фазных напряжений
- •40) Шаговые двигатели и принципы их работы
- •Соединение трехфазной цепи треугольником
- •Векторная диаграмма линейных и фазных токов
- •44) Коммутационный аппарат
- •Предохранители и тепловые реле
- •Характеристики:
- •Автоматические выключатели и токовые реле
- •Параметры автоматических выключателей:
- •46) Пускорегулирующие
- •Контролирующие[править | править вики-текст]
46) Пускорегулирующие
Пускорегулирующие аппараты предназначены для управления различного рода электроприводами или для управления промышленными потребителями энергии. К этой группе относятся контакторы, пускатели, реостаты и пр.
Контролирующие[править | править вики-текст]
Задача контролирующих аппаратов — контроль заданных параметров (напряжение, ток, температура, давление и пр.). К этой группе относятся реле и датчики.
47) Принцип действия трансформатора
Принцип действия трансформатора. Действие трансформатора основано на явлении электромагнитной индукции. Простейший трансформатор состоит из стального магнитопровода 2 (рис. 212) и двух расположенных на нем обмоток 1 и 3. Обмотки выполнены из изолированного провода и электрически не связаны. К одной из обмоток подается электрическая энергия от источника переменного тока. Эту обмотку называют первичной. К другой обмотке, называемойвторичной, подключают потребители (непосредственно или через выпрямитель).
При подключении трансформатора к источнику переменного тока (электрической сети) в витках его первичной обмотки протекает переменный ток i1, образуя переменный магнитный поток Ф. Этот поток проходит по магнитопроводу трансформатора и, пронизывая витки первичной и вторичной обмоток, индуцирует в них переменные э. д. с. е1 и е2. Если к вторичной обмотке присоединен какой-либо приемник, то под действием э. д. с. е2 по ее цепи проходит ток i2.
Э. д. с, индуцированная в каждом витке первичной и вторичной обмоток трансформатора, согласно закону электромагнитной индукции зависит от магнитного потока, пронизывающего виток, и скорости его изменения. Магнитный поток каждого трансформатора является определенной величиной, зависящей от напряжения и частоты изменения переменного тока в источнике, к которому подключен трансформатор. Постоянна также и скорость изменения магнитного потока, она определяется частотой изменения переменного тока. Следовательно, в каждом витке первичной и вторичной обмоток индуцируется одинаковая э. д.с. В результате этого отношение действующих значений э. д. с. Е1 и E2, индуцированных в первичной и вторичной обмотках трансформатора, будет равно отношению чисел витков ?1 и ?2 этих обмоток, т. е.
E1/E2 = ?1/ ?2.
Отношение э. д. с. Евн обмотки высшего напряжения к э. д. с. Eнн обмотки низшего напряжения (или отношение чисел их витков) называется коэффициентом трансформации,
n = Евн / Eнн = ?вн / ?нн.
Коэффициент трансформации всегда больше единицы. Если пренебречь падениями напряжения в первичной и вторичной обмотках трансформатора (в трансформаторах средней и большой мощности они не превышают обычно 2—5 % номинальных значений напряжений U1 и U2), то можно считать, что отношение напряжения U1 первичной обмотки к напряжению U2 вторичной обмотки приблизительно равно отношению чисел их витков, т. е.
U1/U2? ?1/ ?2
Таким образом, подбирая требуемое соотношение между числами витков первичной и вторичной обмоток, можно увеличивать или уменьшать напряжение на приемнике, подключенном к вторичной обмотке. Если необходимо на вторичной обмотке получить напряжение большее, чем подается на первичную, то применяют повышающие трансформаторы, у которых число витков во вторичной обмотке больше, чем в первичной.
В понижающих трансформаторах, наоборот, число витков вторичной обмотки меньше, чем в первичной.
Трансформатор не может осуществить преобразование напряжения постоянного тока. При подключении его первичной обмотки к сети постоянного тока в трансформаторе создается постоянный по величине и направлению магнитный поток, который не может индуцировать э. д. с. в первичной и вторичной обмотках. Поэтому не будет происходить передачи электрической энергии из первичной обмотки во вторичную.
При подключении первичной обмотки трансформатора к сети переменного тока через эту обмотку проходит некоторый ток, называемый током холостого хода. При включении нагрузки по вторичной обмотке трансформатора начинает проходить ток, при этом увеличивается и ток, проходящий по первичной обмотке. Чем больше нагрузка трансформатора, т. е. электрическая мощность и ток i2, отдаваемые его вторичной обмоткой подключенным к ней приемникам, тем больше электрическая мощность и ток i1, поступающие из сети в первичную обмотку.
Ввиду того что потери мощности в трансформаторе обычно малы, можно приближенно принять, что мощности в первичной и вторичной обмотках одинаковы. В этом случае можно считать, что токи в обмотках трансформатора приблизительно обратно пропорциональны напряжениям: I1/I2 ? U2/U1или что токи в обмотках трансформатора обратно пропорциональны числам витков первичной и вторичной обмоток: I1/I2 ? ?2/?1. Это означает, что в повышающем трансформаторе ток во вторичной обмотке меньше, чем в первичной (во столько раз, во сколько напряжение U2 больше напряжения U1), а в понижающем ток во вторичной обмотке больше, чем в первичной. Поэтому в трансформаторах обмотки высшего напряжения выполняются из более тонких проводов, чем обмотки низшего напряжения.
48) В настоящее время наиболее распространены трехфазные асинхронные двигатели с короткозамкнутым ротором. Пуск и остановка таких двигателей при включении на полное напряжение сети осуществляются дистанционно при помощи магнитных пускателей.
Наиболее часто используется схема с одним пускателем и кнопками управления "Пуск" и "Стоп". Для того, чтобы обеспечить вращение вала двигателя в обе стороны используется схема с двумя пускателями (или с реверсивным пускателем) и тремя кнопками. Такая схема позволяет менять направление вращения вала двигателя "на ходу" без его предварительной остановки.
Схемы пуска двигателя
Электрический двигатель М питается от трехфазной сети переменного напряжения. Трехфазный автоматический выключатель QF предназначен для отключения схемы при коротком замыкании. Однофазный автоматический выключатель SF защищает цепи управления.
Основным элементом магнитного пускателя является контактор (мощное реле для коммутации больших токов) КМ. Его силовые контакты коммутируют три фазы, подходящие к электродвигателю. Кнопка SB1 ("Пуск") предназначена для пуска двигателя, а кнопка SB2 ("Стоп") - для остановки. Тепловые биметаллические реле KK1 и КК2 осуществляют отключение схемы при превышении тока, потребляемого электродвигателем.
При нажатии кнопки SB1 контактор КМ срабатывает и контактами KM.1, КМ.2, КМ.3 подключает электродвигатель к сети, а контактом КМ.4 блокирует кнопку (самоблокировка).
Для остановки электродвигателя достаточно нажать кнопку SB2, при этом контактор КМ отпускает и отключает электродвигатель.
Важным свойством магнитного пускателя является то, что при случайном пропадании напряжения в сети двигатель отключается, но восстановление напряжения в сети не приводит к самопроизвольному запуску двигателя, так как при отключении напряжения отпускает контактор КМ, и для повторного включения необходимо нажать кнопку SB1.
При неисправности установки, например, при заклинивании и остановке ротора двигателя, ток, потребляемый двигателем, возрастает в несколько раз, что приводит к срабатыванию тепловых реле, размыканию контактов KK1, КК2 и отключению установки. Возврат контактов КК в замкнутое состояние производится вручную после устранения неисправности.
Реверсивный магнитный пускатель позволяет не только запускать и останавливать электрический двигатель, но изменять направление вращения ротора. Для этого схема пускателя (рис. 2) содержит два комплекта контакторов и кнопок пуска.
49) Автотрансформаторы и трехфазные трансформаторы
Автотрансформатор. В случае когда вторичное напряжение не сильно отличается от первичного (при коэффициенте трансформации, близком к единице), вместо обычного двухобмоточного трансформатора выгодно применять автотрансформатор, отличающийся от обычного тем, что его обмотка низшего напряжения составляет часть обмотки высшего напряжения (рис. 226, а). Иными словами, он имеет вместо двух обмоток одну, разделенную на две части. Участок 1—3 образует обмотку высшего напряжения, участок 2—3 — обмотку низшего напряжения. По участку 2—3 протекает разность токов i2 — i1.
В автотрансформаторе потери мощности меньше, чем в двух-обмоточном трансформаторе, при одинаковой номинальной мощности. Это объясняется тем, что в двухобмоточном трансформаторе вся мощность S2=U2I2 передается из первичной цепи во вторичную электромагнитным путем, а в автотрансформаторе электромагнитным путем передается только часть этой мощности S2 (1 – 1/n) (здесь n — коэффициент трансформации). Остальная часть S2/n передается непосредственно из первичной во вторичную цепь в результате электрической связи между ними, поэтому рассчитывать автотрансформатор на эту мощность не требуется. Чем ближе коэффициент трансформации к единице, тем меньше часть мощности S2 передается электромагнитным путем, следовательно, тем меньше масса и габаритные размеры автотрансформатора. Например, при n = 2 электромагнитным путем во вторичную цепь передается половина мощности S2, а при n = 3 — уже 2/3 этой мощности. Следовательно, преимущества автотрансформаторов проявляются только при небольших коэффициентах трансформации, когда разность токов i2 — i1 мала и участок 2—3 включает в себя значительную часть всех имеющихся в трансформаторе витков. При больших коэффициентах трансформации выгоды от применения автотрансформаторов практически нет.
Основным недостатком автотрансформаторов является то, что у них вторичная цепь электрически связана с первичной и должна
Рис.
226. Схемы автотрансформатора (а) и
трехфазного трансформатора (б)
поэтому иметь одинаковую с ней изоляцию по отношению к земле. По этой причине, а также по условиям техники безопасности применение автотрансформаторов для связи цепей высокого и низкого напряжения недопустимо.
Трехфазный трансформатор. Схемы соединения обмоток. Трехфазное напряжение обычно преобразуют трехстержне-выми трехфазными трансформаторами (рис. 226,б), в которых первичная и вторичная обмотки каждой фазы расположены на общем стержне. Только при очень больших мощностях (более 10 MB*А в фазе) для этой цели применяют три однофазных трансформатора, так как для транспортирования и монтажа они более удобны. Первичная и вторичная обмотки трехфазных трансформаторов могут быть соединены «звездой» (символ Y). «звездой с выведенной нулевой точкой» (символ Yн) или «треугольником» (символ ?).
В трансформаторах, предназначенных для выпрямительных установок, вторичную обмотку иногда соединяют по схеме «зигзаг с выведенной нулевой точкой».
Обычно обмотку высшего напряжения (ВН) соединяют по схеме «звезда», что позволяет при заданном линейном напряжении иметь меньшее число витков в фазе и снижает требования к изоляции обмоток, так как фазное напряжение в схеме «звезда» в ?З раз меньше линейного. Зажимы обмоток ВН обозначают буквами: начала — А, В, С, концы — X, Y, Z; зажимы обмоток низшего напряжения (НН); начала — a, b, c, концы — x, у, Z.
При соединении обмоток трансформатора по схеме Y/Y и ?/? отношение линейных напряжений Uл.вн/Uл.нн при холостом ходе равно отношению ?BH/?Hн = n. При соединении по схеме Y/? отношение этих напряжений будет В ?Зn, а при ?/Y — n/?3.
В каждой фазе трехфазного трансформатора происходят те же процессы, что и в однофазном трансформаторе, поэтому в нем сохраняются те же соотношения между напряжениями, токами и числами витков обмоток.
Группы соединений обмоток. В зависимости от схемы соединения первичной и вторичной обмоток, направления намотки и маркировки выводов трехфазного трансформатора его линейные первичные и вторичные напряжения могут быть сдвинуты по фазе на различный угол. Для облегчения практического включения трансформаторов на параллельную работу приходится разделять
Рис.
227. Электрические схемы и векторные
диаграммы напряжений трансформаторов
с соединением обмоток по схемам Y/Y и Y/?
их на группы в зависимости от сдвига по фазе между линейными напряжениями, измеренными на одноименных зажимах. Группы соединений обозначают целыми числами от 0 до 11. Номер группы определяется углом между векторами первичного и вторичного линейных напряжений, поделенным на 30°, при этом угол отсчитывают от вектора линейного напряжения обмотки ВН по часовой стрелке (в сторону отставания векторов).
Трансформаторы, соединенные по схеме «звезда — звезда», имеют нулевую группу и обозначаются Y/Y-0 или Y/Yн-0. При этом векторы линейных напряжений UАВ и Uаb совпадают по фазе, т. е. угол между ними равен нулю (рис. 227, а). Трансформаторы, соединенные по схеме «звезда — треугольник» или «треугольник — звезда», имеют одиннадцатую группу и обозначаются Y/?-11 или ?/Y-11. В этом случае вектор Uab обмотки НН отстает от вектора UАB обмотки ВН на угол 330° (рис. 227,б).
Однофазные трансформаторы также разделяются на группы, но у них в зависимости от направления намотки и маркировки выводов напряжения первичной и вторичной обмоток при холостом ходе могут совпадать по фазе либо быть свинуты на 180°. В соответствии с этим они могут принадлежать к нулевой или шестой группе.
Трехфазные трансформаторы, также как и однофазные, бывают двухобмоточные и многообмоточные. На тяговых подстанциях иногда устанавливают трехобмоточные трансформаторы с двумя вторичными обмотками. Одна из них питает контактную сеть, а другая — электрические потребители близлежащих районов.
50)
Схема
включает реверсивный МП и кнопки
управления SB1 (Вперед), SB2 (Назад), SВЗ (Стоп).
Схема обеспечивает: дистанционный пуск, реверсирование и останов, защиту двигателя от перегрузки. защиту от самозапуска.
МП состоит из двух контакторов переменного тока КМ1 и КМ2 с главными и вспомогательными контактами (блок-контактами) и тепловыми реле КК с размыкающим контактом.
Для пуска двигателя оператор нажимает на кнопу SB1 (либо SB2, в зависимости от требуемого направления вращения). КатушкаКМ1 (либо КМ2) получает питание, контактор срабатывает, включая контакты в цепи статора и блокирует пусковую кнопку. Двигатель разгоняется. При перегрузке (если ток статор длительно превышает 1,1 - 1,2 номинального значения) срабатывают тепловые реле КК, отключая своим контактом цепь питания катушки. В МП предусмотрена электрическая блокировка от одновременного включения контакторов.
Для остановки двигателя оператор нажимает на кнопку SВЗ (Стоп). Для защиты от коротких замыканий используется автоматический выключатель QF с электродинамическим расцепителем.
