
- •1.1. От централизованных систем - к вычислительным сетям
- •1.1. От централизованных систем - к вычислительным сетям
- •1.1.1. Эволюция вычислительных систем
- •1.1.2. Вычислительные сети - частный случай распределенных систем
- •1.1. От централизованных систем - к вычислительным сетям
- •1.1. От централизованных систем - к вычислительным сетям
- •1.1.3. Основные программные и аппаратные компоненты сети
- •1.1.4. Что дает предприятию использование сетей
- •1.2. Основные проблемы построения сетей
- •1.2. Основные проблемы построения сетей
- •1.2.1. Связь компьютера с периферийными устройствами
- •1.2.2. Простейший случай взаимодействия двух компьютеров
- •1.2. Основные проблемы построения сетей
- •1.2.3. Проблемы физической передачи данных по линиям связи
- •1.2.4. Проблемы объединения нескольких компьютеров
- •1.2. Основные проблемы построения сетей
- •1.2.5. Структуризация как средство построения больших сетей
- •1.2.6. Сетевые службы
- •1.3. Понятие «открытая система» и проблемы стандартизации
- •1.3. Понятие «открытая система» и проблемы стандартизации
- •1.3.1. Многоуровневый подход. Протокол. Интерфейс. Стек протоколов
- •1.3.2. Модель osi
- •1.3. Понятие «открытая система» и проблемы стандартизации
- •1.3.3. Уровни модели osi
- •1.3.4. Понятие «открытая система»
- •1.3. Понятие «открытая система» и проблемы стандартизации
- •1.3.6. Стандартные стеки коммуникационных протоколов
- •1.4. Локальные и глобальные сети
- •1.4. Локальные и глобальные сети
- •1.4.1. Особенности локальных, глобальных и городских сетей
- •1.4.2. Отличия локальных сетей от глобальных
- •1.4.3. Тенденция к сближению локальных и глобальных сетей
- •1.5. Сети отделов, кампусов и корпораций
- •1.5. Сети отделов, кампусов и корпораций
- •1.5.1. Сети отделов
- •1.5.2. Сети кампусов
- •1.5.3. Корпоративные сети
- •1.6. Требования, предъявляемые к современным вычислительным сетям
- •1.6. Требования, предъявляемые к современным вычислительным сетям
- •1.6.1. Производительность
- •1.6.2. Надежность и безопасность
- •1.6.3. Расширяемость и масштабируемость
- •1.6.4. Прозрачность
- •1.6.5. Поддержка разных видов трафика
- •1.6.6. Управляемость
- •1.6.7. Совместимость
- •2.1. Протоколы и стандарты локальных сетей
- •2.1. Протоколы и стандарты локальных сетей
- •2.1.1. Общая характеристика протоколов локальных сетей
- •2.1.2. Структура стандартов ieee 802.X
- •2.2. Протокол llc уровня управления логическим каналом (802.2)
- •2.2. Протокол llc уровня управления логическим каналом (802.2)
- •2.2.1. Три типа процедур уровня llc
- •2.2.2. Структура кадров llc. Процедура с восстановлением кадров llc2
- •2.3. Технология Ethernet (802.3)
- •2.3. Технология Ethernet (802.3)
- •2.3..1. Метод доступа csma/cd
- •2.3.2. Максимальная производительность сети Ethernet
- •2.3.3. Форматы кадров технологии Ethernet
- •2.3. Технология Ethernet (802.3)
- •2.3. Технология Ethernet (802.3)
- •2.3.4. Спецификации физической среды Ethernet
- •2.3.5. Методика расчета конфигурации сети Ethernet
- •2.4. Технология Token Ring (802.5)
- •2.4. Технология Token Ring (802.5)
- •2.4.1. Основные характеристики технологии
- •2.4.2. Маркерный метод доступа к разделяемой среде
- •2.4.3. Форматы кадров Token Ring
- •2.4.4. Физический уровень технологии Token Ring
- •2.6. Fast Ethernet и 100vg - AnyLan как развитие технологии Ethernet
- •2.6. Fast Ethernet и 100vg - AnyLan как развитие технологии Ethernet
- •2.6.1. Физический уровень технологии Fast Ethernet
- •2.6.2. Правила построения сегментов Fast Ethernet при использовании повторителей
- •2.6.3. Особенности технологии 100vg-AnyLan
- •2.7. Высокоскоростная технология Gigabit Ethernet
- •2.7. Высокоскоростная технология Gigabit Ethernet
- •2.7.1. Общая характеристика стандарта
- •2.7.2. Средства обеспечения диаметра сети в 200 м на разделяемой среде
- •2.7.3. Спецификации физической среды стандарта 802.3z
- •2.7.4. Gigabit Ethernet на витой паре категории 5
- •3.1. Структурированная кабельная система
- •3.1. Структурированная кабельная система
- •3.1.1. Иерархия в кабельной системе
- •3.1.2. Выбор типа кабеля для горизонтальных подсистем
- •3.1.3. Выбор типа кабеля для вертикальных подсистем
- •3.1.4. Выбор типа кабеля для подсистемы кампуса
- •3.1. Структурированная кабельная система
- •3.1. Структурированная кабельная система
- •3.1.1. Иерархия в кабельной системе
- •3.1.2. Выбор типа кабеля для горизонтальных подсистем
- •3.1.3. Выбор типа кабеля для вертикальных подсистем
- •3.1.4. Выбор типа кабеля для подсистемы кампуса
- •3.3. Логическая структуризация сети с помощью мостов и коммутаторов
- •3.3. Логическая структуризация сети с помощью мостов и коммутаторов
- •3.3.1. Причины логической структуризации локальных сетей
- •3.3.2. Принципы работы мостов
- •3.3. Логическая структуризация сети с помощью мостов и коммутаторов
- •3.3. Логическая структуризация сети с помощью мостов и коммутаторов
- •3.3.3. Коммутаторы локальных сетей
- •3.3.4. Полнодуплексные протоколы локальных сетей
- •3.3.5. Управления потоком кадров при полудуплексной работе
- •3.4. Техническая реализация и дополнительные функции коммутаторов
- •3.4. Техническая реализация и дополнительные функции коммутаторов
- •3.4.1. Особенности технической реализации коммутаторов
- •3.4.2. Характеристики, влияющие на производительность коммутаторов
- •3.4. Техническая реализация и дополнительные функции коммутаторов
- •3.4. Техническая реализация и дополнительные функции коммутаторов
- •3.4.3. Дополнительные функции коммутаторов
- •3.4.4. Виртуальные локальные сети
- •3.4.5. Типовые схемы применения коммутаторов в локальных сетях
- •4.1. Принципы объединения сетей на основе протоколов сетевого уровня
- •4.1. Принципы объединения сетей на основе протоколов сетевого уровня
- •4.1.1. Ограничения мостов и коммутаторов
- •4.1.2. Понятие internetworking
- •4.1.3. Принципы маршрутизации
- •4.1. Принципы объединения сетей на основе протоколов сетевого уровня
- •4.1. Принципы объединения сетей на основе протоколов сетевого уровня
- •4.1.4. Протоколы маршрутизации
- •4.1.5. Функции маршрутизатора
- •4.1.6. Реализация межсетевого взаимодействия средствами tcp/ip
- •4.2. Адресация в ip-сетях
- •4.2. Адресация в ip-сетях
- •4.2.1. Типы адресов стека tcp/ip
- •4.2.2. Классы ip-адресов
- •4.2.3. Особые ip-адреса
- •4.2.4. Использование масок в ip-адресации
- •4.2.5. Порядок распределения ip-адресов
- •4.2. Адресация в ip-сетях
- •4.2. Адресация в ip-сетях
- •4.2.6. Автоматизация процесса назначения ip-адресов
- •4.2.7. Отображение ip-адресов на локальные адреса
- •4.2.8. Отображение доменных имен на ip-адреса
- •4.3. Протокол ip
- •4.3. Протокол ip
- •4.3.1. Основные функции протокола ip
- •4.3.2. Структура ip-пакета
- •4.3.3. Таблицы маршрутизации в ip-сетях
- •4.3. Протокол ip
- •4.3. Протокол ip
- •4.3.4. Маршрутизация без использования масок
- •4.3.5. Маршрутизация с использованием масок
- •4.3.6. Фрагментация ip-пакетов
- •4.3.7. Протокол надежной доставки tcp-сообщений
- •4.4. Протоколы маршрутизации в ip-сетях
- •4.4. Протоколы маршрутизации в ip-сетях
- •4.4.1. Внутренние и внешние протоколы маршрутизации Internet
- •4.4.2. Дистанционно-векторный протокол rip
- •4.4.3. Протокол «состояния связей» ospf
- •4.5. Средства построения составных сетей стека Novell
- •4.5. Средства построения составных сетей стека Novell
- •4.5.1. Общая характеристика протокола ipx
- •4.5.2. Формат пакета протокола ipx
- •4.5.3. Маршрутизация протокола ipx
- •4.6. Основные характеристики маршрутизаторов и концентраторов
- •4.6. Основные характеристики маршрутизаторов и концентраторов
- •4.6.1. Маршрутизаторы
- •4.6.2. Корпоративные модульные концентраторы
- •4.6.3. Стирание граней между коммутаторами и маршрутизаторами
- •5.1. Основные понятия и определения
- •5.1. Основные понятия и определения
- •5.1.1. Обобщенная структура и функции глобальной сети
- •5.1.2. Типы глобальных сетей
- •5.2. Глобальные связи на основе выделенных линий
- •5.2. Глобальные связи на основе выделенных линий
- •5.2.1. Аналоговые выделенные линии
- •5.2.2. Цифровые выделенные линии
- •5.2.3. Протоколы канального уровня для выделенных линий
- •5.2.4. Использование выделенных линий для построения корпоративной сети
- •5.3. Глобальные связи на основе сетей с коммутацией каналов
- •5.3. Глобальные связи на основе сетей с коммутацией каналов
- •5.3.1. Аналоговые телефонные сети
- •5.3.2. Служба коммутируемых цифровых каналов Switched 56
- •5.3.3. Isdn - сети с интегральными услугами
- •5.4. Компьютерные глобальные сети с коммутацией пакетов
- •5.4. Компьютерные глобальные сети с коммутацией пакетов
- •5.4.1. Принцип коммутации пакетов с использованием техники виртуальных каналов
- •5.4.2. Сети х.25
- •5.4.3. Сети Frame Relay
- •5.4.4. Технология атм
- •5.5. Удаленный доступ
- •5.5. Удаленный доступ
- •5.5.1. Основные схемы глобальных связей при удаленном доступе
- •5.5.2. Доступ компьютер - сеть
- •5.5.3. Удаленный доступ через промежуточную сеть
- •6.1. Функции и архитектура систем управления сетями
- •6.1. Функции и архитектура систем управления сетями
- •6.1.1. Функциональные группы задач управления
- •6.1.2. Многоуровневое представление задач управления
- •6.1.3. Архитектуры систем управления сетями
- •6.2. Стандарты систем управления
- •6.2. Стандарты систем управления
- •6.2.1. Стандартизуемые элементы системы управления
- •6.2.2. Стандарты систем управления на основе протокола snmp
- •6.3. Мониторинг и анализ локальных сетей
- •6.3. Мониторинг и анализ локальных сетей
- •6.3.1. Классификация средств мониторинга и анализа
- •6.3.2. Анализаторы протоколов
- •6.3.3. Сетевые анализаторы
- •6.3.4. Кабельные сканеры и тестеры
- •6.3. Мониторинг и анализ локальных сетей
- •6.3. Мониторинг и анализ локальных сетей
- •6.3.5. Многофункциональные портативные приборы мониторинга
- •6.3.6. Мониторинг локальных сетей на основе коммутаторов
3.1.2. Выбор типа кабеля для горизонтальных подсистем
Большинство проектировщиков начинает разработку структурированной кабельной системы с горизонтальных подсистем, так как именно к ним подключаются конечные пользователи. При этом они могут выбирать между экранированной витой парой, неэкранированной витой парой, коаксиальным кабелем и волоконно-оптическим кабелем. Возможно использование и беспроводных линий связи.
Горизонтальная подсистема характеризуется очень большим количеством ответвлений кабеля (рис. 3.3), так как его нужно провести к каждой пользовательской розетке, причем и в тех комнатах, где пока компьютеры в сеть не объединяются. Поэтому к кабелю, используемому в горизонтальной проводке, предъявляются повышенные требования к удобству выполнения ответвлений, а также удобству его прокладки в помещениях. На этаже обычно устанавливается кроссовая панель, которая позволяет с помощью коротких отрезков кабеля, оснащенного разъемами, провести перекоммутацию соединений между пользовательским оборудованием и концентраторами/коммутаторами.
Рис. 3.3. Структура кабельной системы этажа и здания
Медный провод, в частности неэкранированная витая пара, является предпочтительной средой для горизонтальной кабельной подсистемы, хотя, если пользователям нужна очень высокая пропускная способность или кабельная система прокладывается в агрессивной среде, для нее подойдет и волоконно-оптический кабель. Коаксиальный кабель - это устаревшая технология, которой следует избегать, если только она уже широко не используется на предприятии. Беспроводная связь является новой и многообещающей технологией, однако из-за сравнительной новизны и низкой помехоустойчивости лучше ограничить масштабы ее использования неответственными областями.
При выборе кабеля принимаются во внимание следующие характеристики: полоса пропускания, расстояние, физическая защищенность, электромагнитная помехозащищенность, стоимость. Кроме того, при выборе кабеля нужно учитывать, какая кабельная система уже установлена на предприятии, а также какие тенденции и перспективы существуют на рынке в данный момент.
Экранированная витая пара, STP, позволяет передавать данные на большее расстояние и поддерживать больше узлов, чем неэкранированная. Наличие экрана делает ее более дорогой и не дает возможности передавать голос. Экранированная витая пара используется в основном в сетях, базирующихся на продуктах IBM и Token Ring, и редко подходит к остальному оборудованию локальных сетей.
Неэкранированная витая пара UTP по характеристикам полосы пропускания и поддерживаемым расстояниям также подходит для создания горизонтальных подсистем. Но так как она может передавать данные и голос, она используется чаще.
Однако и коаксиальный кабель все еще остается одним из возможных вариантов кабеля для горизонтальных подсистем. Особенно в случаях, когда высокий уровень электромагнитных помех не позволяет использовать витую пару или же небольшие размеры сети не создают больших проблем с эксплуатацией кабельной системы.
Толстый Ethernet обладает по сравнению с тонким большей полосой пропускания, он более стоек к повреждениям и передает данные на большие расстояния, однако к нему сложнее подсоединиться и он менее гибок. С толстым Ethernet сложнее работать, и он мало подходит для горизонтальных подсистем. Однако его можно использовать в вертикальной подсистеме в качестве магистрали, если оптоволоконный кабель по каким-то причинам не подходит.
Тонкий Ethernet - это кабель, который должен был решить проблемы, связанные с применением толстого Ethernet. До появления стандарта 10Base-T тонкий Ethernet был основным кабелем для горизонтальных подсистем. Тонкий Ethernet проще монтировать, чем толстый. Сети на тонком Ethernet можно быстро собрать, так как компьютеры соединяются друг с другом непосредственно.
Главный недостаток тонкого Ethernet - сложность его обслуживания. Каждый конец кабеля должен завершаться терминатором 50 Ом. При отсутствии терминатора или утере им своих рабочих свойств (например, из-за отсутствия контакта) перестает работать весь сегмент сети, подключенный к этому кабелю. Аналогичные последствия имеет плохое соединение любой рабочей станции (осуществляемое через Т-коннектор). Неисправности в сетях на тонком Ethernet сложно локализовать. Часто приходится отсоединять Т-коннектор от сетевого адаптера, тестировать кабельный сегмент и затем последовательно повторять эту процедуру для всех присоединенных узлов. Поэтому стоимость эксплуатации сети на тонком Ethernet обычно значительно превосходит стоимость эксплуатации аналогичной сети на витой паре, хотя капитальные затраты на кабельную систему для тонкого Ethernet обычно ниже.
Основные области применения оптоволоконного кабеля - вертикальная подсистема и подсистемы кампусов. Однако, если нужна высокая степень защищенности данных, высокая пропускная способность или устойчивость к электромагнитным помехам, волоконно-оптический кабель может использоваться и в горизонтальных подсистемах. С волоконно-оптическим кабелем работают протоколы AppleTalk, ArcNet, Ethernet, FDDI и Token Ring, а также новые протоколы 100AnyLAN, Fast Ethernet, ATM.
Стоимость установки сетей на оптоволоконном кабеле для горизонтальной подсистемы оказывается весьма высокой. Эта стоимость складывается из стоимости сетевых адаптеров (около тысячи долларов каждый) и стоимости монтажных работ, которая в случае оптоволокна гораздо выше, чем при работе с другими видами кабеля.
Преобладающим кабелем для горизонтальной подсистемы является неэкранированная витая пара категории 5. Ее позиции еще более укрепятся с принятием спецификации 802.3аb для применения на этом виде кабеля технологии Gigabit Ethernet.
На рис. 3.4 показаны типовые коммутационные элементы структурированной кабельной системы, применяемые на этаже при прокладке неэкранированной витой пары. Для сокращения количества кабелей здесь установлен 25-парный кабель и разъем для такого типа кабеля Telco, имеющий 50 контактов.
Рис. 3.4. Коммутационные элементы горизонтальной кабельной подсистемы для UTP