
- •1.1. От централизованных систем - к вычислительным сетям
- •1.1. От централизованных систем - к вычислительным сетям
- •1.1.1. Эволюция вычислительных систем
- •1.1.2. Вычислительные сети - частный случай распределенных систем
- •1.1. От централизованных систем - к вычислительным сетям
- •1.1. От централизованных систем - к вычислительным сетям
- •1.1.3. Основные программные и аппаратные компоненты сети
- •1.1.4. Что дает предприятию использование сетей
- •1.2. Основные проблемы построения сетей
- •1.2. Основные проблемы построения сетей
- •1.2.1. Связь компьютера с периферийными устройствами
- •1.2.2. Простейший случай взаимодействия двух компьютеров
- •1.2. Основные проблемы построения сетей
- •1.2.3. Проблемы физической передачи данных по линиям связи
- •1.2.4. Проблемы объединения нескольких компьютеров
- •1.2. Основные проблемы построения сетей
- •1.2.5. Структуризация как средство построения больших сетей
- •1.2.6. Сетевые службы
- •1.3. Понятие «открытая система» и проблемы стандартизации
- •1.3. Понятие «открытая система» и проблемы стандартизации
- •1.3.1. Многоуровневый подход. Протокол. Интерфейс. Стек протоколов
- •1.3.2. Модель osi
- •1.3. Понятие «открытая система» и проблемы стандартизации
- •1.3.3. Уровни модели osi
- •1.3.4. Понятие «открытая система»
- •1.3. Понятие «открытая система» и проблемы стандартизации
- •1.3.6. Стандартные стеки коммуникационных протоколов
- •1.4. Локальные и глобальные сети
- •1.4. Локальные и глобальные сети
- •1.4.1. Особенности локальных, глобальных и городских сетей
- •1.4.2. Отличия локальных сетей от глобальных
- •1.4.3. Тенденция к сближению локальных и глобальных сетей
- •1.5. Сети отделов, кампусов и корпораций
- •1.5. Сети отделов, кампусов и корпораций
- •1.5.1. Сети отделов
- •1.5.2. Сети кампусов
- •1.5.3. Корпоративные сети
- •1.6. Требования, предъявляемые к современным вычислительным сетям
- •1.6. Требования, предъявляемые к современным вычислительным сетям
- •1.6.1. Производительность
- •1.6.2. Надежность и безопасность
- •1.6.3. Расширяемость и масштабируемость
- •1.6.4. Прозрачность
- •1.6.5. Поддержка разных видов трафика
- •1.6.6. Управляемость
- •1.6.7. Совместимость
- •2.1. Протоколы и стандарты локальных сетей
- •2.1. Протоколы и стандарты локальных сетей
- •2.1.1. Общая характеристика протоколов локальных сетей
- •2.1.2. Структура стандартов ieee 802.X
- •2.2. Протокол llc уровня управления логическим каналом (802.2)
- •2.2. Протокол llc уровня управления логическим каналом (802.2)
- •2.2.1. Три типа процедур уровня llc
- •2.2.2. Структура кадров llc. Процедура с восстановлением кадров llc2
- •2.3. Технология Ethernet (802.3)
- •2.3. Технология Ethernet (802.3)
- •2.3..1. Метод доступа csma/cd
- •2.3.2. Максимальная производительность сети Ethernet
- •2.3.3. Форматы кадров технологии Ethernet
- •2.3. Технология Ethernet (802.3)
- •2.3. Технология Ethernet (802.3)
- •2.3.4. Спецификации физической среды Ethernet
- •2.3.5. Методика расчета конфигурации сети Ethernet
- •2.4. Технология Token Ring (802.5)
- •2.4. Технология Token Ring (802.5)
- •2.4.1. Основные характеристики технологии
- •2.4.2. Маркерный метод доступа к разделяемой среде
- •2.4.3. Форматы кадров Token Ring
- •2.4.4. Физический уровень технологии Token Ring
- •2.6. Fast Ethernet и 100vg - AnyLan как развитие технологии Ethernet
- •2.6. Fast Ethernet и 100vg - AnyLan как развитие технологии Ethernet
- •2.6.1. Физический уровень технологии Fast Ethernet
- •2.6.2. Правила построения сегментов Fast Ethernet при использовании повторителей
- •2.6.3. Особенности технологии 100vg-AnyLan
- •2.7. Высокоскоростная технология Gigabit Ethernet
- •2.7. Высокоскоростная технология Gigabit Ethernet
- •2.7.1. Общая характеристика стандарта
- •2.7.2. Средства обеспечения диаметра сети в 200 м на разделяемой среде
- •2.7.3. Спецификации физической среды стандарта 802.3z
- •2.7.4. Gigabit Ethernet на витой паре категории 5
- •3.1. Структурированная кабельная система
- •3.1. Структурированная кабельная система
- •3.1.1. Иерархия в кабельной системе
- •3.1.2. Выбор типа кабеля для горизонтальных подсистем
- •3.1.3. Выбор типа кабеля для вертикальных подсистем
- •3.1.4. Выбор типа кабеля для подсистемы кампуса
- •3.1. Структурированная кабельная система
- •3.1. Структурированная кабельная система
- •3.1.1. Иерархия в кабельной системе
- •3.1.2. Выбор типа кабеля для горизонтальных подсистем
- •3.1.3. Выбор типа кабеля для вертикальных подсистем
- •3.1.4. Выбор типа кабеля для подсистемы кампуса
- •3.3. Логическая структуризация сети с помощью мостов и коммутаторов
- •3.3. Логическая структуризация сети с помощью мостов и коммутаторов
- •3.3.1. Причины логической структуризации локальных сетей
- •3.3.2. Принципы работы мостов
- •3.3. Логическая структуризация сети с помощью мостов и коммутаторов
- •3.3. Логическая структуризация сети с помощью мостов и коммутаторов
- •3.3.3. Коммутаторы локальных сетей
- •3.3.4. Полнодуплексные протоколы локальных сетей
- •3.3.5. Управления потоком кадров при полудуплексной работе
- •3.4. Техническая реализация и дополнительные функции коммутаторов
- •3.4. Техническая реализация и дополнительные функции коммутаторов
- •3.4.1. Особенности технической реализации коммутаторов
- •3.4.2. Характеристики, влияющие на производительность коммутаторов
- •3.4. Техническая реализация и дополнительные функции коммутаторов
- •3.4. Техническая реализация и дополнительные функции коммутаторов
- •3.4.3. Дополнительные функции коммутаторов
- •3.4.4. Виртуальные локальные сети
- •3.4.5. Типовые схемы применения коммутаторов в локальных сетях
- •4.1. Принципы объединения сетей на основе протоколов сетевого уровня
- •4.1. Принципы объединения сетей на основе протоколов сетевого уровня
- •4.1.1. Ограничения мостов и коммутаторов
- •4.1.2. Понятие internetworking
- •4.1.3. Принципы маршрутизации
- •4.1. Принципы объединения сетей на основе протоколов сетевого уровня
- •4.1. Принципы объединения сетей на основе протоколов сетевого уровня
- •4.1.4. Протоколы маршрутизации
- •4.1.5. Функции маршрутизатора
- •4.1.6. Реализация межсетевого взаимодействия средствами tcp/ip
- •4.2. Адресация в ip-сетях
- •4.2. Адресация в ip-сетях
- •4.2.1. Типы адресов стека tcp/ip
- •4.2.2. Классы ip-адресов
- •4.2.3. Особые ip-адреса
- •4.2.4. Использование масок в ip-адресации
- •4.2.5. Порядок распределения ip-адресов
- •4.2. Адресация в ip-сетях
- •4.2. Адресация в ip-сетях
- •4.2.6. Автоматизация процесса назначения ip-адресов
- •4.2.7. Отображение ip-адресов на локальные адреса
- •4.2.8. Отображение доменных имен на ip-адреса
- •4.3. Протокол ip
- •4.3. Протокол ip
- •4.3.1. Основные функции протокола ip
- •4.3.2. Структура ip-пакета
- •4.3.3. Таблицы маршрутизации в ip-сетях
- •4.3. Протокол ip
- •4.3. Протокол ip
- •4.3.4. Маршрутизация без использования масок
- •4.3.5. Маршрутизация с использованием масок
- •4.3.6. Фрагментация ip-пакетов
- •4.3.7. Протокол надежной доставки tcp-сообщений
- •4.4. Протоколы маршрутизации в ip-сетях
- •4.4. Протоколы маршрутизации в ip-сетях
- •4.4.1. Внутренние и внешние протоколы маршрутизации Internet
- •4.4.2. Дистанционно-векторный протокол rip
- •4.4.3. Протокол «состояния связей» ospf
- •4.5. Средства построения составных сетей стека Novell
- •4.5. Средства построения составных сетей стека Novell
- •4.5.1. Общая характеристика протокола ipx
- •4.5.2. Формат пакета протокола ipx
- •4.5.3. Маршрутизация протокола ipx
- •4.6. Основные характеристики маршрутизаторов и концентраторов
- •4.6. Основные характеристики маршрутизаторов и концентраторов
- •4.6.1. Маршрутизаторы
- •4.6.2. Корпоративные модульные концентраторы
- •4.6.3. Стирание граней между коммутаторами и маршрутизаторами
- •5.1. Основные понятия и определения
- •5.1. Основные понятия и определения
- •5.1.1. Обобщенная структура и функции глобальной сети
- •5.1.2. Типы глобальных сетей
- •5.2. Глобальные связи на основе выделенных линий
- •5.2. Глобальные связи на основе выделенных линий
- •5.2.1. Аналоговые выделенные линии
- •5.2.2. Цифровые выделенные линии
- •5.2.3. Протоколы канального уровня для выделенных линий
- •5.2.4. Использование выделенных линий для построения корпоративной сети
- •5.3. Глобальные связи на основе сетей с коммутацией каналов
- •5.3. Глобальные связи на основе сетей с коммутацией каналов
- •5.3.1. Аналоговые телефонные сети
- •5.3.2. Служба коммутируемых цифровых каналов Switched 56
- •5.3.3. Isdn - сети с интегральными услугами
- •5.4. Компьютерные глобальные сети с коммутацией пакетов
- •5.4. Компьютерные глобальные сети с коммутацией пакетов
- •5.4.1. Принцип коммутации пакетов с использованием техники виртуальных каналов
- •5.4.2. Сети х.25
- •5.4.3. Сети Frame Relay
- •5.4.4. Технология атм
- •5.5. Удаленный доступ
- •5.5. Удаленный доступ
- •5.5.1. Основные схемы глобальных связей при удаленном доступе
- •5.5.2. Доступ компьютер - сеть
- •5.5.3. Удаленный доступ через промежуточную сеть
- •6.1. Функции и архитектура систем управления сетями
- •6.1. Функции и архитектура систем управления сетями
- •6.1.1. Функциональные группы задач управления
- •6.1.2. Многоуровневое представление задач управления
- •6.1.3. Архитектуры систем управления сетями
- •6.2. Стандарты систем управления
- •6.2. Стандарты систем управления
- •6.2.1. Стандартизуемые элементы системы управления
- •6.2.2. Стандарты систем управления на основе протокола snmp
- •6.3. Мониторинг и анализ локальных сетей
- •6.3. Мониторинг и анализ локальных сетей
- •6.3.1. Классификация средств мониторинга и анализа
- •6.3.2. Анализаторы протоколов
- •6.3.3. Сетевые анализаторы
- •6.3.4. Кабельные сканеры и тестеры
- •6.3. Мониторинг и анализ локальных сетей
- •6.3. Мониторинг и анализ локальных сетей
- •6.3.5. Многофункциональные портативные приборы мониторинга
- •6.3.6. Мониторинг локальных сетей на основе коммутаторов
6.1.2. Многоуровневое представление задач управления
Кроме описанного выше разделения задач управления на несколько функциональных групп, полезно разделять задачи управления на уровни в соответствии с иерархической организацией корпоративной сети. Корпоративная сеть строится иерархически, отражая иерархию самого предприятия и его задач. Нижний уровень сети составляют элементы сети - отдельные компьютеры, коммуникационные устройства, каналы передачи данных. На следующем уровне иерархии эти элементы образуют сети разного масштаба - сеть рабочей группы, сеть отдела, сеть отделения и, наконец, сеть предприятия в целом.
Для построения интегрированной системы управления разнородными элементами сети естественно применить многоуровневый иерархический подход. Это, в принципе, стандартный подход для построения большой системы любого типа и назначения - от государства до автомобильного завода. Применительно к системам управления сетями наиболее проработанным и эффективным для создания многоуровневой иерархической системы является стандарт Telecommunication Management Network (TMN), разработанный совместными усилиями ITU-T, ISO, ANSI и ETSI. Хотя этот стандарт и предназначался изначально для телекоммуникационных сетей, но ориентация на использование общих принципов делает его полезным для построения любой крупной интегрированной системы управления сетями. Стандарты TMN состоят из большого количества рекомендаций ITU-T (и стандартов других организаций), но основные принципы модели TMN описаны в рекомендации М.3010.
На каждом уровне иерархии модели TMN решаются задачи одних и тех же пяти функциональных групп, рассмотренных выше (то есть управления конфигурацией, производительностью, ошибками, безопасностью и учетом), однако на каждом уровне эти задачи имеют свою специфику. Чем выше уровень управления, тем более общий и агрегированный характер приобретает собираемая о сети информация, а сугубо технический характер собираемых данных начинает по мере повышения уровня меняться на производственный, финансовый и коммерческий.
Модель TMN упрощенно можно представить в виде двухмерной диаграммы (рис. 6.1).
Рис. 6.1. Многоуровневое представление задач управления сетью
Нижний уровень - уровень элементов сети (Network Element layer, NE) - состоит из отдельных устройств сети: каналов, усилителей, оконечной аппаратуры, мультиплексоров, коммутаторов и т. п. Элементы могут содержать встроенные средства для поддержки управления - датчики, интерфейсы управления, а могут и представлять вещь в себе, требующую для связи с системой управления разработки специального оборудования - устройств связи с объектом, УСО. Современные технологии обычно имеют встроенные функции управления, которые позволяют выполнять хотя бы минимальные операции по контролю за состоянием устройства и за передаваемым устройством трафиком. Подобные функции встроены в технологии FDDI, ISDN, frame relay, SDH. В этом случае устройство всегда можно охватить системой управления, даже если оно не имеет специального блока управления, так как протокол технологии обязывает устройство поддерживать некоторые функции управления. Устройства, которые работают по протоколам, не имеющим встроенных функций контроля и управления, снабжаются отдельным блоком управления, который поддерживает один из двух наиболее распространенных протоколов управления - SNMP или CMIP. Эти протоколы относятся к прикладному уровню модели OSI.
Следующий уровень - уровень управления элементами сети (network element management layer) - представляет собой элементарные системы управления. Элементарные системы управления автономно управляют отдельными элементами сети - контролируют канал связи SDH, управляют коммутатором или мультиплексором. Уровень управления элементами изолирует верхние слои системы управления от деталей и особенностей управления конкретным оборудованием. Этот уровень ответственен за моделирование поведения оборудования и функциональных ресурсов нижележащей сети. Атрибуты этих моделей позволяют управлять различными аспектами поведения управляемых ресурсов. Обычно элементарные системы управления разрабатываются и поставляются производителями оборудования. Примерами таких систем могут служить системы управления CiscoView от Cisco Systems, Optivity от Bay Networks, RADView от RAD Data Communications и т. д.
Выше лежит уровень управления сетью (Network management layer). Этот уровень координирует работу элементарных систем управления, позволяя контролировать конфигурацию составных каналов, согласовывать работу транспортных подсетей разных технологий и т. п. С помощью этого уровня сеть начинает работать как единое целое, передавая данные между своими абонентами.
Следующий уровень - уровень управления услугами (Service management layer) - занимается контролем и управлением за транспортными и информационными услугами, которые предоставляются конечным пользователям сети. В задачу этого уровня входит подготовка сети к предоставлению определенной услуги, ее активизация, обработка вызовов клиентов. Формирование услуги (service provisioning) заключается в фиксации в базе данных значений параметров услуги, например, требуемой средней пропускной способности, максимальных величин задержек пакетов, коэффициента готовности и т. п. В функции этого уровня входит также выдача уровню управления сетью задания на конфигурирование виртуального или физического канала связи для поддержания услуги. После формирования услуги данный уровень занимается контролем за качеством ее реализации, то есть за соблюдением сетью всех принятых на себя обязательств в отношении производительности и надежности транспортных услуг. Результаты контроля качества обслуживания нужны, в частности, для подсчета оплаты за пользование услугами клиентами сети. Например, в сети frame relay уровень управления услугами следит за заказанными пользователем значениями средней скорости CIR и согласованной пульсации Вс, фиксируя нарушения со стороны пользователя и сети.
Уровень бизнес-управления (Business management layer) занимается вопросами долговременного планирования сети с учетом финансовых аспектов деятельности организации, владеющей сетью. На этом уровне помесячно и поквартально подсчитываются доходы от эксплуатации сети и ее отдельных составляющих, учитываются расходы на эксплуатацию и модернизацию сети, принимаются решения о развитии сети с учетом финансовых возможностей. Уровень бизнес-управления обеспечивает для пользователей и поставщиков услуг возможность предоставления дополнительных услуг. Этот уровень является частным случаем уровня автоматизированной системы управления предприятием (АСУП), в то время как все нижележащие уровни соответствуют уровням автоматизированной системы управления технологическими процессами (АСУТП), для такого специфического типа предприятия, как телекоммуникационная или корпоративная сеть. Но если телекоммуникационная сеть действительно чаще всего является основой телекоммуникационной компании, то корпоративную сеть и обслуживающий ее персонал обычно трудно назвать предприятием. Тем не менее на некоторых западных фирмах корпоративная сеть выделена в автономное производственное подразделение со своим бюджетом и со своими финансовыми договорами на обслуживание, которое данное подразделение заключает с основными производственными подразделениями предприятия.