
- •Матрицы
- •2. Определитель квадратной матрицы. Свойства определителей.
- •3. Обратная матрица. Процедура ее нахождения.
- •4. Ранг матрицы. Способы нахождения.
- •5. Невырожденные системы слау. Способы решения.
- •7. 7. Линейные пространства (лп). Примеры лп. Пространства Векторы. Геометрическая интерпретация векторов и линейных операций над ними.
- •1. Умножение вектора на число:
- •2. Сумма двух векторов:
- •§ 1. Декартова система координат на плоскости
- •§ 2. Полярная система координат на плоскости
- •§3. Декартова система координат в пространстве
- •§4. Цилиндрическая система координат в пространстве
- •§5. Сферическая система координат в пространстве
- •9. Скалярное произведение векторов. Определение. Вычисление. Свойства.
- •11. Смешанное произведение векторов. Определение. Вычисление. Свойства.
- •15. Гипербола.
- •16. Парабола.
- •19. Взаимное расположение прямых.
- •18. Прямая в пространстве.
- •19. Эллипсоид.
- •19. Гиперболоид и конус.
- •19. Параболоид.
- •21. Множества и операции над ними.
- •4) Монотонность функции.
- •5) Четность (нечетность) функции.
- •25.Основные элементарные функции
- •26.Основные элементарные функции
- •27.Числовая последовательность
- •28. Предел функции.
- •29. Бесконечно малые и бесконечно большие функции.
- •38. Сравнение бесконечно малых.
- •30.Первый и второй замечательные пределы.
- •31. Теоремы о пределах последовательности.
- •31. Теоремы о пределах.
- •32. Непрерывность функции в точке.
- •33.Свойства функций, непрерывных на отрезке: ограниченность, существование промежуточных, наибольшего, наименьшего значений. Теорема Больцано-Коши
- •34.Производная функции. Механический и геометрический смысл производной. Односторонние производные. Уравнение касательной и нормали. Таблица производных
- •35.Дифференцируемость функции. Необходимое и достаточное условие дифференцируемости. Дифференциал функции, его смысл.
- •Свойства дифференциала.
- •36.Сложная функция, ее производная и дифференциал. Инвариантность формы дифференциала.
- •37.Правила дифференцирования функции
- •38.0Братные, неявные функции. Их дифференцирование. Логарифмическое дифференцирование. Дифференцирование функций, заданных параметрически.
- •39.Производные и дифференциалы высших порядков.
- •40.Теорема Роля.
- •41.Теорема Лагранжа, ее применение. Теоремы Коши, Ферма
- •42.Правило Лопиталя раскрытия неопределенностей.
- •43.Формула Тейлора с остаточным членом в форме Пеано, в форме Лангранжа. Представление по формуле Маклорена функций: ех, sinx, cosx, , .
- •44.Монотонные функции. Условия монотонности функции.
- •45.Экстремум функции. Необходимое условие существования экстремума.
- •46.Достаточные условия существования экстремума.
- •47.Исследование функций на выпуклость, вогнутость, точки перегиба. Асимптоты графика функций.
- •12.Линейные операторы. Ядро, матрица, характеристическое уравнение линейного оператора Собственные значения и собственные векторы операторов.
- •20.Квадратичные формы. Критерий Сильвестра. Приведение квадратичной формы к каноническому виду.
- •48.Общая схема исследования функции. Экстремумы. Наименьшее и наибольшее значение функции на отрезке.
- •22.Высказывания, предикаты, логические операции. Прямая, обратная теорема. Необходимое, достаточное условие.
Матрицы
и действия над матрицами.
Матрица - прямоуг таблица чисел, содерж m-строк и n-столбцов.
Матрицы равны между собой, если равны соответств элементы этих матриц.
Матрица, в которой m=n наз квадратной или n-ого порядка.
3. Квадратная матрица, у которой все элементы, кроме элементов гл диагонали, равны 0 называется диагональной.
4. Диаг матрица, у которой каждый элемент главной диаг =1 наз единичной.
5. Квадратная матрица наз. треугольной, если все элементы, расположенные по одну сторону её гл диаг =0.
6. Матрица, у которой все числа, стоящие на гл диаг не нулевые, а также некоторое кол ненулевых строк, наз трапециевидной.
7. Матрица, содерж один столбец или строку, наз вектором из Rn пространства.
Действия:
Сложение – только для матриц одинакового размера.
Умножение на число. Множества матриц одинакового размера обознач Mm*n. Тогда введённое на этом мн-ве операции сложения и умнож на число превращ Mm*n в линейное пр-во, векторами которого явл матрицы m*n.
Умножение на вектор-столбец. Для умножения матрицы на вектор-столбец надо, чтобы число столбцов матрицы было равно числу координат вектора.
Две матрицы наз эквивалентными, если одна из них получена из другой с помощью элементарным преобраз. любую матрицу можно привести к канонической.
Транспонированием называется смена всех элементов столбца соотв элементами строки. Если AT=A, то матрица А наз. симметричная (она обязательно квадратная).
2. Определитель квадратной матрицы. Свойства определителей.
При вычислении определителя 3го порядка пользуются правилом треугольников(или Саррюса)
Свойства определителей:
1.Определитель не изменится , если его строки заменить столбцами и наоборот.
2. При перестановке 2х параллельных рядов определитель меняет знак.
3.определитель имеющий 2 одинаковых ряда равен 0
4.общий множитель элементов какого либо ряда определителя можно вынести за знак определителя.
5 Определитель не изменится, если к элементам одного ряда прибавить соответствующие элементы параллельного ряда, умноженные на любое число.
Теорема о разложении определителя. Теорема Лапласа.
Т2 (о разложении определителя по элементам ряда): определитель равен сумме произведения элементов некоторого ряда на их алгебраическое дополнение.
3. Обратная матрица. Процедура ее нахождения.
Пусть
есть матрица А – невырожденная.
А-1, A-1*A=A*A-1=E, где E –единичная матрица. A-1 имеет те же размеры, что и A.
Алгоритм нахождения обратной матрицы:
вместо каждого элемента матрицы аij записываем его алгебраическое дополнение.
аij
Аij
А* - союзная матрица.
транспонируем полученную союзную матрицу. А*Т
делим каждый элемент союзной матрицы на определитель матрицы А.
,
A-1
=
A*Т
Теорема: (об аннулировании определителя): сумма произведений элементов некоторого ряда определителя на алгебраическое дополнение к элементам другого параллельного ряда всегда равна нулю.