
- •Вопрос№1: генетика и ее место в системе естественных наук. Предмет генетики. Основные этапы развития. Методы генетики.
- •Вопрос №2: моногибридное скрещивание. 1-ый закон менделя. Особенности методических подходов в эксперементах менделя. Типы аллельного взаимодействия и их хар-ка.
- •Вопрос №3: 2-ой закон менделя. Правило «чистоты гамет». Проверка закона методом х-квадрат. Анализирующее скрещивание и его значение для генетического анализа.
- •Вопрос №4: особенности исследования признаков при ди- и полигибридном скрещивании. 3-ий закон менделя. Математические формулы расщепления.
- •Вопрос №5: кодоминирование. Особенности расщепления признаков. Характер наследования групп крови у человека.
- •Вопрос №6: множественный аллелизм. Примеры. Генетич. Основа множ. Аллелиза.
- •Вопрос №7: неполное доминирование. Особенности расщепления признаков при моно- и дигибридном скрещивании.
- •Дигибридное скрещивание при неполном доминировании.
- •Вопрос №8: типы неаллельного взаимодействия генов и их общая хар-ка.
- •Вопрос №9: комплементарное взаимодействие генов и его генетич. Основа. Характер расщепления признаков. Примеры.
- •Вопрос №10: эпистаз. Типы эпистаза. Характер расщепления признаков. Примеры.
- •Вопрос №11: полимерия (кумулятивная и некумулятивная). Хар-р расщепления признаков.
- •Вопрос №12: действие генов модификаторов и плейотропное действие генов. Примеры.
- •Вопрос №14: нуклеосомная организация хромосом. Уровни компактизации – декомпактизация и их биол. Смысл.
- •Вопрос №15: митоз. Место митоза в клет. Цикле. Поведение хромосом при митозе.
- •Вопрос №16: типы митоза.
- •Вопрос №17: меойз как цитологическая основа образования половых клеток. Стадии мейоза.
- •Вопрос №18: расщепление на гаметическом уровне. Доказательство закона «чистоты гамет» с помощью тетрадного анализа.
- •Вопрос №19: гаметный мейоз. Механизм сперматогенеза и оогенеза. Роль мейоза и митоза. Место мейоза в жиз. Цикле животных.
- •Вопрос№20: споровый мейоз. Особенности образования гамет у высших растений. Микроспорогенез и мегаспорогенез. Роль митоза и мейоза в образовании гамет у растений.
- •Вопрос №21: генетическая основа несовместимости у растений.
- •Вопрос №21(второй): двойное оплодотворение у растений и его биол. Смысл.
- •Вопрос №22: зиготный мейоз. Механизм образования акроспор у Newrospora crassa и Saccharomyces cerevisiae.
- •Вопрос №23: нерегулярные типы полового размножения у растений и животных и их механиз.
- •Вопрос №24: механизм определения пола xy, xo, xz. И гаплоидно-диплоидного.
- •Вопрос №25: балансовая теория определения пола у дрозофилы.
- •Вопрос №26: половой хроматин.
- •Вопрос №27: наследование признаков сцепленных с полом. Работы моргана, крисс-кросс наследование.
- •Вопрос №28: характер наследования признаков при нерасхождении половых хромосом.
- •Вопрос №29: сценпленное наследование и его док-во в работах бэтсона, пеннета, моргана.
- •Вопрос №31: картирование хромосом при двухфакторном скрещивании в опытах стертеванта.
- •Вопрос №32. Принципы картирования хромосом при трехфакторном скрещивании. Правило аддитивности. Интерференция
- •Вопрос №33. Цитологическое доказательство кроссинговера крейтон и макклинток на кукурузе и штерна на дрозофиле
- •Вопрос №37. Молекулярная модель кроссинговера р. Холлидея и ее основные этапы.
- •Вопрос №38: молекулярная модель кроссинговера мезельсона и рэддинга, ее основные этапы.
- •Вопрос №39.Способы генетического обмена у бактерий. Генетический анализ при конъюгации.
- •Вопрос №40. Способы генетического обмена у бактерий. Генетический анализ при трансформации.
- •Вопрос №41: способы генетического обмена у бактерий. Генетич. Анализ при трансдукции.
- •Вопрос №43: доказательство бидлом и татумом концепции «один ген – один фермент».
- •Вопрос №46: доказательство генетической роли днк и рнк.
- •Вопрос №47: механизмы репликации днк. Ферменты репликации.
- •Вопрос №48: особенности репликации различных геномов у про- и эукариот.
- •Вопрос №49: хар-ка повреждений днк, репарируемых системами репарации.
- •Вопрос №50: механизмы репарации днк, и их общая хар-ка.
- •Вопрос №51: механизм эксцизионной репарации повреждений днк
- •Вопрос №52 механиз пострепликативной репарации повреждений днк.
- •Вопрос №53 система рестрикции и модификации и ее биологическое значение.
- •Вопрос №54 транскрипция. Составляющие элементы, их структура и функция.Этапы транскрипции
- •Вопрос №55 трансляция. Составляющие элементы их структура и функция. Этапы трансляции.
- •Вопрос №56: генетический код и его характеристика.
- •Вопрос №57: доказательство триплетности кода ф. Криком.
- •Вопрос №58: расшифровка генетического кода. Опыты м. Ниренберга, ф. Ледера, дж. Маттеи и др.
- •Вопрос №59: особенности строения генов у про- и эукариот. Строение оперонов.
- •Вопрос №60: регуляция транскрипции путем индукции на примере lac-оперона.
- •Вопрос №61: механизм репрессии и аттенуации на примере работы trp-оперона.
- •Вопрос №62: катаболитная репрессия.
- •Вопрос №64: методы учета мутаций и микроорганизмов.
- •Вопрос №65: методы учета мутаций у дрозофилы, метод меллер-5, Double yellow, ci1b и Cyrly. Возможности методов.
- •Вопрос №66: классификация генных мутаций.
- •Вопрос №67: методы учета мутаций у растений.
- •Вопрос №69 индуцированные генные мутации и механизм их возникновения( под действием аналогов оснований, алкилирующих агентов, включения ахридиновых красителей в днк)
- •Вопрос №70 хромосомные мутации. Механизм возникновения. Классификация.
- •Вопрос №71: хромосомные мутции типа делеций. Особенности поведения во время мейоза. Механизмы возникновения делеционных мутаций.
- •Вопрос №72: хромосомные мутации типа дупликаций. Поведение во время мейоза.
- •Вопрос №73: хромосомные мутации типа инверсий. Поведение во время мейоза и генетические последствия. Причины низкой жизнеспособности и отсутствия рекомбинантов.
- •Вопрос №74: хромосомные мутации типа транслокаций. Поведение во время мейоза. Причины низкой жизнеспособности и отсутствия рекомбинантов.
- •Вопрос №75: геномные мутации. Классификация.
- •Вопрос №76: автополиплоидия и аллополиплоидия.
- •Вопрос №77: амфиплоиды. Механизм их образования. Примеры.
- •Вопрос №78: гаплоидия и ее использование в биотехнологии растений.
- •Вопрос №79: анеуплоидия. Типы анеуплоидов. Особенности мейоза. Использование анеуплоидов в генетическом анализе.
- •Вопрос №80: онтогенез как процесс реализации наследственной программы развития организма. Этапы онтогенеза.
- •Вопрос №81: механизмы реализации действия генов в процессе онтогенеза
- •Вопрос № 82: особенности наследования нехромосомных генов эукариот
- •Пластидное наследование
- •Наследование через митохондрии
- •Вопрос № 85. Методы изучения генетики человека
Вопрос №65: методы учета мутаций у дрозофилы, метод меллер-5, Double yellow, ci1b и Cyrly. Возможности методов.
Наиболее удобные методы учета мутаций разработаны для дрозофилы. Собственно именно создание методов учета рецессивных летальных мутаций в Х-хромосоме определило успех Г.Меллера, открывшего действие рентгеновых лучей на мутационный процесс у дрозофилы. Для учета рецессивных летальных мутаций, сцепленных с полом, у дрозофилы широко применяют метод Меллер-5. Самки линии Меллер-5, или М-5, несут в обеих Х-хромосомах по две инверсии: sc8 и сигма49. Инверсия sc8 захватывает почти всю Х-хромосому, а в ее пределах находится еще одна инверсия –сигма49. В этой системе кроссинговер полностью подавлен. Используемые инверсии не имеют рецессивного летального действия. Кроме того, обе хромосомы М-5 несут три маркера: два рецессивных – wa (абрикосовый цвет глаз) и sc8 (укороченные щетинки-фенотипическое проявление одноименной инверсии, затрагивающий ген sc) и один доминантный – Bar. При скрещивании исследуемых самцов с самками М-5 в индивидуальных семьях F2 получают по два класса самок и самцов, если в Х-хромосоме сперматозоидов исходного самца не возникла рецессивная летальная мутация. Если же рецессивная леталь появилась, то в соответствующей индивидуальной культуре в F2 мы получим только один класс самцов, будут отсутствовать самцы дикого типа w+ B+. Метод Меллер-5 можно использовать и для регистрации рецессивных мутаций в Х-хромосоме с видимым проявлением. Для этой цели удобнее применять метод Double yellow, основанный на скрещивании исследуемых самцов с самками, несущими сцепленные Х-хромосомы. Благодаря тому, что при таком скрещивании сыновья получают свою Х-хромосому непосредственно от отца, рецессивные мутации в этой хромосоме можно учитывать уже в F1. Учет летальных мутаций и мутаций с видимым фенотипическим проявлением легче удается для Х-хромосом дрозофилы благодаря специфике ее наследования. Однако существуют методы учета летальных мутаций в аутосомах. Например, для учета рецессивных летальных мутаций в хромосоме 2 используют так называемый метод сбалансированных леталей. Для этого применяют линию, гетерозиготную по хромосоме 2. В одном гомологе находятся доминантные гены Cyrly (Cy-загнутые крылья) и Lobe (L- уменьшение глаза лопастной формы), в другом гомологе Plum (Pm- сливово-коричневый цвет глаз). Кроме того, хромосому Су L содержит инверсии, припятствующие кроссинговеру. Все три доминантные мутации обладают рецессивным летальным действием. Благодаря этому при разведении такой линии выживают только гетерозиготы по указанным генам. Это и есть система сбалансированных леталей. Для изучения рецессивных летальных мутаций, а также рецессивных мутаций с видимым проявлением исследуемых мух скрещивают с мухами CyL/Pm. В F1 получают мух, гетерозиготных по той или другой хромосоме исследуемой линии, и индивидуально вновь скрещивают сегрегантов CyL с мухами CyL/Pm. В F2 скрещивают между собой самцов и самок с признаками CyL и анализируют F3. В отсутствие рецессивной летальной мутации расщепление F3 будет 2CyL:1Cy+L+, а если в половых клетках мух исходной линии возникали летальные мутации, то в соответствующих индивидуальных культурах в F3 не будет нормальных мух 2CyL:0Cy+L+. Аналогично учитывают в F3 и рецессивные мутации с видимым проявлением в хромосоме 2.