
- •14.5. Пересчет параметров электрооборудования на эвм
- •Контрольные вопросы и задания
- •Глава 15
- •15.1. Общие положения. Технические условия на прием в ремонт
- •15.2. Схема технологического процесса ремонта электрических машин
- •15.3. Способы определения неисправностей электрических машин
- •15.4. Разборка электрических машин
- •15.5. Удаление старой обмотки
- •15.6. Технология ремонта всыпных обмоток
- •15.7. Ремонт сердечников, валов, вентиляторов и станин
- •Контрольные вопросы и задания
- •Глава 16 технология ремонта трансформаторов
- •16.1.Схема технологического процесса ремонта трансформатора
- •16.2. Разборка и определение неисправностей
- •16.3. Ремонт обмоток
- •16.4. Ремонт магнитопровода
- •16.5. Ремонт арматуры и сборка трансформаторов
- •Контрольные вопросы и задания
- •Глава 17 технология ремонта низковольтной аппаратуры и средств автоматизации
- •17.1Общие положения ремонта низковольтной аппаратуры и средств автоматизации
- •17.2Предохранители и реостаты
- •17.3Ремонт пусковой аппаратуры и средств автоматизации
- •Контрольные вопросы и задания
- •Глава 18 испытания электрооборудования после ремонта
- •18.1. Назначение и виды испытаний
- •18.2.Испытания асинхронных электродвигателей
- •18.3.Испытания трансформаторов
- •Контрольные вопросы и задания
- •Раздел V электротехническая служба сельскохозяйственных предприятий
- •Глава 19 принципы формирования электротехнических служб в агропромышленном комплексе
- •19.1.Технический сервис в сельском хозяйстве
- •19.2. Обеспечение сервиса электрооборудования
- •Контрольные вопросы и задания
- •Глава 20
- •20.1. Допустимая длительность простоев электрифицированного оборудования для мелких и средних животноводческих ферм, зернотоков и хранилищ
- •20.2. Анализ деятельности этс
- •20.3. Расчет объема работ и штатного состава исполнителей этс
- •Типовые штаты службы главного энергетика сельскохозяйственных предприятий
- •Штатные нормативы службы главного энергетика сельскохозяйственных предприятий
- •20.5. Рекомендуемая численность инженерно-технических работников этс, чел.
- •20.4. Разработка графиков технического обслуживания и текущего ремонта
- •20.5. Выбор формы эксплуатации электрооборудования и структуры этс
- •20.6. Разработка ремонтно-обслуживающей базы
- •Контрольные вопросы и задания
- •Глава 21 экономия и рациональное использование электрической энергии
- •21.1. Правила пользования электрической энергией.
- •Общие положения
- •21.2. Расчеты за пользование электроэнергией. Общие положения
- •21.3. Нормирование потребления электроэнергии
- •21.4. Условия прекращения подачи электрической энергии
- •21.5. Ответственность энергоснабжающей организации
- •21.6. Пользование электрической энергией производственными сельскохозяйственными потребителями. Общие положения
- •21.7. Расчеты за электрическую энергию, используемую сельскохозяйственными предприятиями
- •21.8. Определение резервов экономии электрической энергии
- •21.1. Продолжительность работы электроприводов
- •21.2. Рекомендуемые значения коэффициента использования
- •21.3. Удельные нормы расхода электрической энергии для электропривода, кВт • ч/гол.
- •21.4. Мероприятия по экономии электрической энергии
- •Контрольные вопросы н задания
- •Приложения
- •1.Перечень дополнительных работ по отдельным видам эну
- •2.Повреждения электропроводки, устраняемые при текущем ремонте
- •3.Характеристика стальных труб, применяемых для электропроводки
- •4. Условные единицы для определения объема работ, выполняемых электромонтерами в хозяйствах
- •Литература
- •Оглавление
- •Раздел I. Общие вопросы эксплуатации
- •Глава 1. Основные понятия и определения (г. П. Ерошенко) 5
- •Глава 2. Причины и последствия отказов электрооборудования
- •Глава 3. Дестабилизирующие и компенсирующие воздействия
- •Раздел II. Теоретические основы эксплуатации
- •Глава 4. Основы рационального выбора и использования
- •Глава 5. Элементы теории надежности (г. П. Ерошенко) 62
- •Глава 6. Методы теории массового обслуживания (г. П. Ерошенко) 89
- •Глава 7. Техническое диагностирование электрооборудования
- •Раздел III. Эксплуатация отдельных видов
- •Глава 8. Эксплуатация воздушных и кабельных линий
- •Глава 9. Эксплуатация силовых трансформаторов
- •Глава 10. Эксплуатация электродвигателей и генераторов
- •Глава 11. Эксплуатация электротехнологического
- •Глава 12. Эксплуатация аппаратуры защиты,
- •Глава 13. Эксплуатация осветительных и облучательных установок
- •Раздел IV. Технология капитального ремонта
- •Глава 14. Общие вопросы капитального ремонта
- •14.5Пересчет параметров электрооборудования на эвм 230
- •Глава 15. Технология ремонта электрических машин
- •Глава 16. Технология ремонта трансформаторов
- •Глава 17. Технология ремонта низковольтной аппаратуры
- •Глава 18. Испытания электрооборудования после ремонта
- •Раздел VI. Электротехническая служба
- •Глава 19. Принципы формирования электротехнических служб в
- •Глава 20. Проектирование электротехнической службы (этс)
- •Глава 21. Экономия и рациональное использование
15.5. Удаление старой обмотки
Существуют следующие способы удаления старой обмотки электродвигателей: механический, термомеханический, термохимический, химический и электромагнитный. Рассмотрим их более подробно.
При механическом способе проводят обрезку лобовых соединений. Для этого статор устанавливают на станок для обрезки так, чтобы схема соединения была со стороны режущего инструмента. При обрезке нельзя допускать задевания режущего инструмента за активную сталь пакета статора. После обрезки статор подают на стол для удаления обмотки. Ее удаляют при помощи крюков. Можно отметить следующие недостатки этого способа: трудоемкость, дополнительные затраты времени на чистку пазов статора.
При термомеханическом способе, получившем наибольшее распространение, сначала обмотку отжигают при высокой температуре, а затем удаляют ее, используя механический способ. Отжиг рекомендуется проводить при температуре 280...400°С в течение 4...6 ч. При этом меньшая температура относится к двигателям с алюминиевым корпусом, а большая - к двигателям с чугунными корпусами. Корпуса двигателей рекомендуется охлаждать совместно с печью до 80...90°С (120...150 °С - для двигателей с алюминиевыми корпусами). При температуре 280 °С изоляция только размягчается, и поэтому обмотки рекомендуется удалять по частям. После удаления обмотки корпус;) двигателей охлаждают на воздухе. J
Часто на ремонтных предприятиях" АПК используют печи собственной конструкции. При этом статор охлаждают на воздухе или принудительно вместе с отключенной печью. Все это может привести к тому, что скорость охлаждения статора будет колебаться в широких пределах и появляется опасность в одном случае — снижения пропускной способности печи, а в другом — ухудшения магнитных характеристик стали статора. Последнее возможно при резком охлаждении статора, в результате которого происходит колебание листов пакета стали и появляются механические напряжения.
Методики высоко и низкотемпературного отжига были разработаны в Челябинске и заключаются в следующем.
При низкотемпературном отжиге в течение часа температуру в печи повышают до 400 °С. Затем статоры выдерживают при этой температуре в течение 5,5...7 ч при охлаждении на воздухе. Если применяют ускоренное охлаждение, то статоры выдерживают при температуре 400 °С в течение 4,5...5,5 ч. После окончания отжига приступают к охлаждению статоров. Их охлаждают на открытом воздухе в течение часа. Для того чтобы ускорить процесс охлаждения статоров, их обдувают теплым воздухом. Минимальные потери в стали наблюдают при отжиге в окислительной среде при температуре 900 °С и времени выдержки 0,25...0,50 ч. При минимальном доступе воздуха в среду отжига наилучшие характеристики получают при температуре 800 °С и времени 2 ч.
Дальнейшее увеличение времени выдержки в бескислородной среде приводит к увеличению потерь.
При высокотемпературном отжиге отпадает необходимость в дополнительной чистке пазов. Производительность отжига увеличивается в 12 раз, а расход энергии снижается в 4...5 раз. При этом увеличивается КПД двигателя на 1 ...1,5 %. К недостаткам высокоемпературного отжига следует отнести то, что после 3...4 выжигов нарушается тугая посадка между корпусом и пакетом стали, ослабляется прессовка пакета стали.
Отжиг в расплаве солей (каустической соды, щелочи) проводят при температуре 300 °С (для электродвигателей с алюминиевыми корпусами) и 480 °С (для электродвигателей с чугунными корпусами) в течение нескольких минут без доступа воздуха.
При химическом способе удаления обмотки статоры опускают в емкость с жидкостью МЖ-70. Эта жидкость очень токсичная и летучая, поэтому емкость для нее должна быть герметичной.
При термохимическом способе в 10%-ный раствор каустической соды или щелочи, разогретый до температуры 80... 100 °С, опускают статоры электродвигателей с обмотками, пропитанными масляно - битумными лаками, и выдерживают там в течение 8...10 ч.
Электромагнитный способ. Статор электродвигателя нагревается за счет потерь в стали. Изготавливают трансформатор со съемным якорем, на незаменяемый стержень наматывают обмотку, а на заменяемый стержень надевают несколько статоров (рис. 15.2). При этом между стержнем и статором расстояние должно быть не более 5 мм. Достоинством этого способа является то, что можно регулировать температуру нагрева путем изменения подводимого напряжения.