- •Матрицы и определители
- •1. 1 Матрицы. Понятия.
- •1.2. Основные операции над матрицами.
- •1.3. Ранг матрицы
- •1.4. Обратная матрица
- •2.2 Свойства определителей
- •9.2 Виды матриц. Ранг матрицы
- •10 Системы линейных уравнений, методы их решения.
- •10.1 Основные понятия
- •10.2 Методы решения слу
- •10.3 Исследование слу по теореме Кронекера – Капелли.
- •11 Система линейных однородных уравнений
- •12 Система линейных неравенств
- •12.1 Понятие системы линейных неравенств. Выпуклые множества. Крайние точки.
- •12.2 Геометрический метод решения системы линейных неравенств с двумя переменными
- •Тема 2. Векторная алгебра трехмерного пространства.
- •1.Геометрические векторы.
- •2.Скалярное произведение.
- •3 Векторное произведение.
- •2.4 Смешанное произведение.
- •Тема 3. Линии и поверхности первого и второго порядка. Основные формулы
- •Понятие уравнения линии на плоскости / поверхности в пространстве.
- •Уравнение прямой на плоскости.
- •3.Применение: линейное интерполирование функций.
- •4. Линейные неравенства. Графический метод линейного программирования.
- •5. Уравнение плоскости пространстве.
- •6. Уравнения прямой в пространстве.
- •7.Плоские линии второго порядка.
- •8. Поверхности второго порядка.
- •Дополнение к тЕмЕ 3. Линии и поверхности первого и второго порядка. Практический материал
- •1. Прямая линия на плоскости.
- •2[Кроме фэу]. Кривые второго порядка.
- •3. Плоскость и прямая в пространстве.
- •4. Поверхности второго порядка.
- •Например, уравнение
- •1. Понятие множества
- •2. Функция
- •2.1. Понятие функции
- •2.2. Способы задания функций.
- •2.3. Понятие функции нескольких переменных.
- •2.4. Неявные функции
- •2.5. Сложные функции
- •2.6. Элементарные функции и их классификация
- •2.7. Трансцендентные функции.
- •4. Предел функции
- •4.1. Определение предела функции
- •4.2. Односторонние пределы функции
- •4.3. Свойства пределов функции
- •4.4. Бесконечно малые и бесконечно большие функции Определение 4.4. Функция х называется бесконечно малой функцией (или просто бесконечно малой) при х хo, если
- •5. Непрерывность функции в точке
- •5.1. Точки непрерывности и точки разрыва функции
- •5.2. Основные теоремы о непрерывных функциях
- •Дифференциальное исчисление функции одной переменной Понятие производной
- •Геометрический смысл производной
- •Экономический смысл производной
- •Правила дифференцирования
- •Производные высших порядков
- •Правило Лопиталя
- •Понятие дифференциала. Геометрический смысл дифференциала. Инвариантность формы первого дифференциала.
Правила дифференцирования
Приведем основные правила для нахождения производной:
Производная постоянной равна нулю, то есть c' = 0.
Производная алгебраической суммы конечного числа дифференцируемых функций равна такой же сумме производных этих функций, то есть
(u(x)± v(x))' = u'(x)± v'(x).
Производная произведения двух дифференцируемых функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго, то есть
(u(x)v(x))' = u'(x)v(x)+u(x)v'(x).
Следствие 1. Постоянный множитель можно выносить за знак производной:
(cu(x))' = cu'(x).
Производная частного двух дифференцируемых функций может быть найдена по формуле
(u(x)/v(x))' = (u'(x)v(x)-u(x)v'(x))/v2(x)
при условии, что v(x)≠ 0.
5. Производная сложной функции:
h(x)=g(f(x))- сложная функция
h´(x)=g´(f(x))· f´(x)
Формулы дифференцирования
(ua(x))' = a ua-1(x)u'(x), в частности,
(1/u(x))'
= -u'(x)/u2(x),
(
)'
= u'(x)/2
;
(logau(x))' = (u'(x)logae)/u(x) при 0<a≠1, u(x)>0, в частности, (ln u(x))' = u'(x)/u(x);
(au(x))' = au(x)ln a u'(x) при 0<a≠1, в частности, (eu(x))' = u'(x)eu(x);
(sin u(x))' = cos u(x)u'(x);
(cos u(x))' = -sin u(x)u'(x);
(tg u(x))' = u'(x)/cos2u(x) x≠ p/2+p n, n=0,+-1,...;
(ctg u(x))' = -u'(x)/sin2u(x) x≠ p n, n=0,+-1,...;
(arcsin u(x))' = u'(x)/
,
-1<u(x)<1;
(arccos u(x))' = -u'(x)/ , -1<u(x)<1;
(arctg u(x))' = u'(x)/(1+u2(x));
(arcctg u(x))' = -u'(x)/(1+u2(x)).
Введем гиперболические функции:
sh x = (1/2)(ex-e-x)- гиперболический синус;
ch x = (1/2)(ex+ex)- гиперболический косинус;
th x = sh x/ch x -гиперболический тангенс;
cth x = ch x/sh x - гиперболический котангенс.
Из определения гиперболических функций элементарно вытекают следующие формулы для нахождения их производных.
(sh x)' = ch x;
(ch x)' = sh x;
(th x)' = 1/ch2 x;
(cth x)' = -1/sh2 x.
Пример1. Найти y', если
y(x) = x3arcsin x.
y(x) = ln sin (x2+1).
y' = (2xcos(x2+1))/sin(x2+1) = 2x ctg(x2+1)
Замечание. Производная любой элементарной функции является элементарной функцией, то есть операция дифференцирования не выводит из класса элементарных функций.
Производные высших порядков
Предположим, что функция f'(x) является дифференцируемой в некоторой точке x интервала (a,b), то есть имеет в этой точке производную. Тогда данную производную называют второй производной и обозначают f(2)(x), f''(x) или y(2), y''(x). Аналогично можно ввести понятие второй , третьей и т. д. производных. По индукции можно ввести понятие n- ой производной:
y(n) = (y(n-1))'. |
(3) |
Функцию, имеющую на некотором множестве конечную производную порядка n, называют n раз дифференцируемой на этом множестве. Методика нахождения производных высших порядков предполагает умение находить производные первого порядка, о чем говорит формула (3).
Если u(x), v(x) две дифференцируемые функции, то для нахождения производной их произведения справедлива формула Лейбница
(u(x)v(x))(n) = u(n)v+nu(n-1)v'+(n(n-1)/2)u(n-2)v''+...+ uv(n) =
= Sk = 0nCnku(n-k)v(k),
где
Cnk = (n(n-1)(n-2)...(n-k+1))/k!, u(0) = u, v(0) = v.
Данная формула Лейбница особенно эффективна в случае, когда одна из перемножаемых функций имеет конечное число отличных от нуля производных и легко вычислить производные другой функции.
Пример 9. Пусть y = ex(x2-1). Найти y(10). Положим u(x) = ex, v(x) = (x2-1). Согласно формуле Лейбница
y(10) = (ex)(25)(x2-1)+10(ex)(9)(x2-1)'+(10· 9/2) (ex)(8)(x2-1)'',
так как следующие слагаемые равны нулю. Поэтому
y(10) = ex(x2-1)+10ex2x+(10· 9/2)ex (2) = ex(x2+20x+89)
