Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Мат-ка. Менеджеры. ЮрГУ курс-1.doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
2.48 Mб
Скачать

4. Поверхности второго порядка.

Поверхностями второго порядка называются такие множества точек в пространстве, координаты которых удовлетворяют уравнению вида

Ax2 + Вy2 + Cz2 + Dxy + Eyz + Fzx + Gx + Hy + Kz + L = 0. (25)

Например, уравнение

определяет сферу радиуса R с центром в начале координат.

При помощи поворотов и параллельного переноса осей координат всякое уравнение вида (25) может быть преобразовано к каноническому виду. Рассмотрим далее основные канонические уравнения, соответствующие типы поверхностей второго порядка и их наиболее важные свойства.

    1. Э

      c

      ллипсоид.

z

Эллипсоидом называется поверхность, которая в некоторой системе прямоугольных декартовых координат определяется уравнением

. (26)

У

Рис. 10

y

x

0

a

b

равнение (26) называется канони-ческим уравнением эллипсоида. Величины a, b, c - полуоси эллипсоида (рис. 10). Сечением эллипсоида любой плоскостью, параллельной координатным плоскостям, является эллипс (в частном случае окружность).

Координаты точек эллипсоида удовлетворяют неравенствам - a £ x £ a, - b £ y £ b, - c £ z £ c.

В частном случае, при a=b, эллипсоид является поверхностью вращения, получающейся при вращении вокруг оси Oz эллипса , лежащего в плоскости xOz. При a = b = с эллипсоид представляет собой сферу.

4. 2. Гиперболоиды.

Гиперболоидами называются поверхности, которые в некоторой системе прямоугольных декартовых координат определяются каноническими уравнениями

, (27)

. (28)

z

z

c

0

b

y

y

x

a

x

Рис. 11 Рис. 12

Гиперболоид, определяемый уравнением (27), называется однополостным (рис. 11); гиперболоид, определяемый уравнением (28), называется двуполостным (рис. 12). Для обоих видов гиперболоидов сечения, параллельные оси Oz - гиперболы (для однополостного гиперболоида в сечении может быть пара пересекающихся прямых); сечения, параллельные плоскости xOy - эллипсы.

Величины a, b, с называются полуосями гиперболоида. В случае однополостного гиперболоида, заданного уравнением (27), только первые из них (a и b) показаны на рис. 11. В случае двуполостного гиперболоида, заданного уравнением (28), одна из них (именно с) показана на рис. 12.

Замечание. При a=b гиперболоиды являются поверхностями вращения.

    1. Параболоиды.

Параболоидами называются поверхности, которые в некоторой системе прямоугольных декартовых координат определяются каноническими уравнениями

, (29)

, (30)

где p и q - положительные числа, называемые параметрами параболоида. Параболоид, определяемый уравнением (29), называется эллиптическим (рис. 13). Сечения эллиптического параболоида, параллельные оси Oz - параболы; сечения, параллельные плоскости xOy - эллипсы. Параболоид, определяемый уравнением (30), называется гиперболическим (рис. 14). Сечения гиперболического параболоида, параллельные плоскостям yOz и xOz - параболы; сечения, параллельные плоскости xOy - гиперболы.

Замечание. В случае, когда p = q, эллиптический параболоид (29) является поверхностью вращения (вокруг оси Oz).

z

z

0

0

y

y

x

Рис. 13 Рис. 14

4

x

.4. Конус.

К

z

онус, определяемый уравнением , имеет вершину в начале координат (рис. 15).

П

0

x

y

a

b

c

оверхность конуса состоит из прямолинейных образующих, проходящих через его вершину и через точки эллипса с полуосями a и b, плоскость которого перпендикулярна оси Oz и находится на расстоянии с от начала координат.

Рис. 15

4.5. Цилиндры.

Поверхности цилиндров состоят из прямых линий (образующих), параллельных оси Oz. Сечениями (перпендикулярными оси Oz) эллипти-ческого цилиндра (его уравнение ), гиперболического цилиндра (его уравнение ) и параболического цилиндра (его уравнение ) соответственно являются эллипсы, гиперболы и параболы.

Пример 20. Определить вид поверхности

,

используя метод сечения плоскостями.

Решение. Уравнение поверхности не содержит членов с произведением координат, следовательно плоскости симметрий параллельны координатным плоскостям.

Пересекая поверхность плоскостями параллельными плоскости xOy, получим:

.

Так как для любого с, полученная кривая является гиперболой с действительной осью, параллельной оси Ox.

Пересекая поверхность плоскостями аналогично получаем уравнение

гиперболы с действительной осью, параллельной оси Ox.

При пересечении данной поверхности плоскостями , параллельными координатной плоскости yOz, получаем:

.

Последнее уравнение при ,т.е. при и , есть уравнение эллипса.

Таким образом сечениями поверхности плоскостями являются эллипсы и гиперболы, действительные оси которых параллельны. Следовательно, исследуемая поверхность ­- двуполостный гиперболоид. Его уравнение можно преобразовать к каноническому виду:

.