- •1.1. Предмет статистики.
- •1.2. Основні категорії статистики
- •1.3. Методи статистики
- •1.4. Основні завдання статистики на сучасному етапі
- •Тема 2. Статистичне спостереження План
- •2.1. Сутність та форми статистичного спостереження
- •2.2. Планування статистичного спостереження
- •2.3. Види статистичного спостереження та способи одержання інформації
- •2.4. Помилки спостереження
- •Тема 3. Зведення та групування статистичних даних План
- •3.1. Статистичне зведення та статистичні таблиці.
- •3.2. Статистичне групування.
- •3.3. Ряди розподілу.
- •3.1. Статистичне зведення та статистичні таблиці
- •Назва таблиці (що, де, коли)
- •3.2. Статистичне групування
- •Поділ населення регіону, млн осіб, за місцем проживання
- •Динаміка зубожіння населення болгарії, %, по роках
- •Комбінаційний поділ робітників
- •Залежність урожайності озимої пшениці від терміну збирання
- •Варіанти формування інтервалів групувань за рівнем прибутковості, %
- •Поділ працюючих за рівнем середньомісячної заробітної плати
- •Вторинне групування працюючих за рівнем середньомісячної заробітної плати
- •3.3. Ряди розподілу
- •Закономірність розподілу
- •Частотні характеристики рядів розподілу
- •Розподіл фірм регіону за рівнем фондоозброєності праці
- •Розподіл робітників за рівнем кваліфікації
- •Характеристики центру розподілу
- •Розподіл домогосподарств міста за рівнем забезпеченості житлом
- •Характеристики варіації
- •Коефіцієнти k для різного обсягу сукупності
- •До розрахунку узагальнюючих характеристик варіації
- •Характеристики форми розподілу
- •До розрахунку коефіцієнта концентрації
- •Коефіцієнти територіальної локалізації
- •Галузева структура зайнятості населення
- •Структура та структурні зрушення споживання палива по роках
- •Види та взаємозв’язок дисперсій
- •Розрахунок загальної та групових дисперсій якості сиру
- •До розрахунку міжгрупової та середньої з групових дисперсій
- •Тема 4. Статистичні показники План
- •4.2. Абсолютні статистичні величини та одиниці їх вимірювання
- •4.1. Суть та види статистичних показників
- •4.2. Абсолютні статистичні величини та одиниці їх вимірювання
- •4.3. Відносні величини та їх характеристика
- •Відносні величини динаміки
- •Відносні величини просторових порівнянь
- •Відносні величини порівняння зі стандартом
- •Відносні величини структури
- •Відносні величини координації
- •Відносні величини інтенсивності
- •4.4. Середні величини та загальні умови їх застосування
- •Види середніх величин та способи їх обрахування
- •Математичні властивості середньої
- •Середні структурні
- •Нормований середній бал
- •Середня арифметична
- •Ставлення населення до смертної кари
- •Середня гармонічна
- •Середня геометрична
- •4.5. Система статистичних показників
- •Тема 5. Вибірковий метод у статистиці План
- •5.1. Суть вибіркового спостереження
- •5.2. Вибіркові оцінки середньої та частки
- •5.3. Різновиди вибірок і способи відбору одиниць з генеральної сукупності
- •5.4. Помилки вибірки
- •Тема 6. Статистичні методи вимірювання взаємозв’язків План
- •6.1. Види взаємозв’язків
- •Види взаємозв’язків і їх особливості
- •Комбінаційний розподіл шахт за глибиною розробки пластів та фондомісткістю вугілля
- •6.2. Кореляційно-регресійний аналіз
- •До розрахунку параметрів лінійної регресії, теоретичних рівнів і залишкових величин
- •6.3. Оцінка щільності та перевірка істотності кореляційного зв’язку
- •До розрахунку загальної дисперсії фондомісткості вугілля ( )
- •До розрахунку факторної дисперсії фондомісткості вугілля ( )
- •6.4. Рангова кореляція
- •До розрахунку коефіцієнта рангової кореляції
- •6.5. Оцінка узгодженості варіації атрибутивних ознак
- •Розподіл респондентів за віком і схильністю до ризику
- •Критичні значення
- •Розподіл пацієнтів клініки за результатами легеневих проб
- •Тема 7. Аналіз інтенсивності динаміки План
- •7.1. Суть і складові елементи динамічного ряду
- •Види рядів динаміки
- •Зімкнення динамічних рядів
- •7.2. Характеристики інтенсивності динаміки
- •Абсолютні та відносні характеристики динаміки
- •Аналітичні показники ряду динаміки
- •Середні показники динаміки
- •Розрахунок тенденції
- •Коефіцієнт випередження
- •Екстраполяція та інтерполяція.
- •Тема 8. Аналіз тенденції розвитку План
- •8.1. Середня абсолютна та відносна швидкість розвитку
- •8.2. Характеристика основної тенденції розвитку
- •Розрахунок ковзних середніх урожайності зернових
- •Динаміка видобутку нафти
- •8.3. Оцінка коливань та сталості динаміки
- •Щомісячна динаміка споживання електроенергії
- •Тренд і сезонні коливання продажу безалкогольних напоїв
- •До розрахунку залишкової дисперсії
- •Тема 9. Індекси План
- •9.1. Суть і функції індексів
- •9.2. Методологічні основи побудови зведених індексів
- •9.3. Агрегатна форма індексів
- •Формули індексів цін і фізичного обсягу за різних систем зважування
- •До розрахунку агрегатних індексів цін і фізичного обсягу
- •9.4. Середньозважені індекси
- •До розрахунку середньозважених індексів цін і фізичного обсягу
- •До розрахунку середньозважених індексів з відносними вагами
- •9.5. Взаємозв’язки індексів
- •9.6. Індекси середніх величин
- •До розрахунку індексів середніх величин
- •До розрахунку системи індексів структурних зрушень
- •Територіальні індекси
- •Товарна маса і ціни експорту
- •Індивідуальні індекси
- •Агрегатні індекси
- •Взаємозв'язок індексів
- •Правило зважування індексів.
- •Середні індекси
- •Розрахунок середнього арифметичного індексу фізичного обсягу
- •Розрахунок середнього геометричного індексу ціни
- •Індекси середніх величин.
- •Тема 10. Графічний метод у статистиці План
- •10.2. Типи діаграм
- •10.3. Картограми та картодіаграми
До розрахунку агрегатних індексів цін і фізичного обсягу
Продукція |
Реалізовано, тис. т |
Ціна за 1 т, грн. |
Агрегати (торгові обороти, тис. грн.) |
|||||
Серпень |
Вересень |
Серпень |
Вересень |
q0p0 |
q1p0 |
q1p1 |
q0p1 |
|
q0 |
q1 |
p0 |
p1 |
|||||
Борошно |
20 |
25 |
320 |
315 |
6400 |
8000 |
7875 |
6300 |
Цукор |
12 |
14 |
700 |
710 |
8400 |
9800 |
9940 |
8520 |
Олія |
7 |
8 |
1250 |
1200 |
8750 |
10000 |
9600 |
8400 |
Разом |
|
|
|
|
23550 |
27800 |
27415 |
23220 |
За даними таблиці зведені індекси цін та фізичного обсягу , реалізованої через біржу агропродукції, становлять:
За Ласпересом: |
За Пааше: |
|
|
|
|
Тобто, біржові ціни на агропродукцію у вересні порівняно із серпнем зменшилися в середньому на 1,4%, реалізована товарна маса зросла в середньому на 18%.
Оскільки в структурі торгового обороту не відбулося значних змін, то розбіжності між індексами, обчисленими за різними системами зважування, неістотні. Будь-який з розрахованих індексів має певний ступінь умовності.
За наявності структурних зрушень у торгових оборотах використовують індекси із середніми вагами або усереднення різнозважених індексів за допомогою середньої геометричної, наприклад, індекс цін
.
Спираючись на формально-математичні критерії, яким відповідає усереднений індекс, І. Фішер назвав його «ідеальним», проте через відсутність конкретного економічного змісту цей індекс не набув широкого практичного застосування.
9.4. Середньозважені індекси
Другою формою зведеного індексу є середньозважений з індивідуальних індексів. Використовують два види середніх — арифметичну та гармонічну. Вибір виду середньої ґрунтується на загальних засадах: середньозважений індекс має бути тотожним відповідному індексу агрегатної форми.
Подамо
інформацію про біржові торги агропродукцією
обсягами торговельного обороту (у серпні
—
,
у вересні —
)
та індивідуальними індексами цін
і фізичного обсягу продажу
(табл. 9.3).
Таблиця 9.3
До розрахунку середньозважених індексів цін і фізичного обсягу
Товар |
Торговельний оборот, тис. грн. |
Індивідуальні індекси |
Умовний агрегат |
|||
Серпень |
Вересень |
цін |
фізичного обсягу |
iq q0 p0 |
|
|
q0 p0 |
q1 p1 |
ір |
іq |
|||
Борошно |
6400 |
7845 |
0,9808 |
1,2500 |
8000 |
8000 |
Цукор |
8400 |
9940 |
1,0143 |
1,1667 |
9800 |
9800 |
Олія |
8750 |
9600 |
0,9600 |
1,1429 |
10000 |
10000 |
Разом |
23550 |
27415 |
|
|
27800 |
27800 |
Умовний
торговий оборот
можна визначити, скоригувавши фактичні
обороти індивідуальними індексами цін
або фізичного обсягу продажу:
У такому разі
зведені індекси за Ласпересом обчислюються
як середня арифметична з вагами
,
а індекси за Пааше — як середня гармонічна
з вагами
|
|
|
|
Обчислимо середньозважені індекси цін та фізичного обсягу продажу за даними табл. 9.3, використовуючи різні варіанти зважування ( — за Пааше, — за Ласпересом):
середньозважений індекс цін
середньозважений індекс фізичного обсягу продажу
.
Як бачимо, значення середньозважених індексів такі самі, як і відповідних їм агрегатних (див. підрозд. 9.3).
При
побудові середньозважених індексів
вартісні ваги можна замінити відносними
величинами структури
d,
сума яких
У цьому разі середньозважені індекси
набирають вигляду
;
Ці формули підтверджують залежність значення зведеного індексу від динаміки окремих складових і пропорцій у сукупності агрегованих елементів.
Наприклад, у регіоні виробництво споживчих товарів зменшилось: продовольчих — на 3, непродовольчих — на 7%, а ціни зросли відповідно на 4 і 6%. Унаслідок нерівномірності динаміки виробництва по групах споживчих товарів змінилась їх структура: на 2 п. п. зросла частка продовольчих товарів і на стільки ж зменшилась частка непродовольчих. Розрахунки зведених індексів фізичного обсягу та цін наведено в табл. 9.4.
Таблиця 9.4

.