- •1.1. Предмет статистики.
- •1.2. Основні категорії статистики
- •1.3. Методи статистики
- •1.4. Основні завдання статистики на сучасному етапі
- •Тема 2. Статистичне спостереження План
- •2.1. Сутність та форми статистичного спостереження
- •2.2. Планування статистичного спостереження
- •2.3. Види статистичного спостереження та способи одержання інформації
- •2.4. Помилки спостереження
- •Тема 3. Зведення та групування статистичних даних План
- •3.1. Статистичне зведення та статистичні таблиці.
- •3.2. Статистичне групування.
- •3.3. Ряди розподілу.
- •3.1. Статистичне зведення та статистичні таблиці
- •Назва таблиці (що, де, коли)
- •3.2. Статистичне групування
- •Поділ населення регіону, млн осіб, за місцем проживання
- •Динаміка зубожіння населення болгарії, %, по роках
- •Комбінаційний поділ робітників
- •Залежність урожайності озимої пшениці від терміну збирання
- •Варіанти формування інтервалів групувань за рівнем прибутковості, %
- •Поділ працюючих за рівнем середньомісячної заробітної плати
- •Вторинне групування працюючих за рівнем середньомісячної заробітної плати
- •3.3. Ряди розподілу
- •Закономірність розподілу
- •Частотні характеристики рядів розподілу
- •Розподіл фірм регіону за рівнем фондоозброєності праці
- •Розподіл робітників за рівнем кваліфікації
- •Характеристики центру розподілу
- •Розподіл домогосподарств міста за рівнем забезпеченості житлом
- •Характеристики варіації
- •Коефіцієнти k для різного обсягу сукупності
- •До розрахунку узагальнюючих характеристик варіації
- •Характеристики форми розподілу
- •До розрахунку коефіцієнта концентрації
- •Коефіцієнти територіальної локалізації
- •Галузева структура зайнятості населення
- •Структура та структурні зрушення споживання палива по роках
- •Види та взаємозв’язок дисперсій
- •Розрахунок загальної та групових дисперсій якості сиру
- •До розрахунку міжгрупової та середньої з групових дисперсій
- •Тема 4. Статистичні показники План
- •4.2. Абсолютні статистичні величини та одиниці їх вимірювання
- •4.1. Суть та види статистичних показників
- •4.2. Абсолютні статистичні величини та одиниці їх вимірювання
- •4.3. Відносні величини та їх характеристика
- •Відносні величини динаміки
- •Відносні величини просторових порівнянь
- •Відносні величини порівняння зі стандартом
- •Відносні величини структури
- •Відносні величини координації
- •Відносні величини інтенсивності
- •4.4. Середні величини та загальні умови їх застосування
- •Види середніх величин та способи їх обрахування
- •Математичні властивості середньої
- •Середні структурні
- •Нормований середній бал
- •Середня арифметична
- •Ставлення населення до смертної кари
- •Середня гармонічна
- •Середня геометрична
- •4.5. Система статистичних показників
- •Тема 5. Вибірковий метод у статистиці План
- •5.1. Суть вибіркового спостереження
- •5.2. Вибіркові оцінки середньої та частки
- •5.3. Різновиди вибірок і способи відбору одиниць з генеральної сукупності
- •5.4. Помилки вибірки
- •Тема 6. Статистичні методи вимірювання взаємозв’язків План
- •6.1. Види взаємозв’язків
- •Види взаємозв’язків і їх особливості
- •Комбінаційний розподіл шахт за глибиною розробки пластів та фондомісткістю вугілля
- •6.2. Кореляційно-регресійний аналіз
- •До розрахунку параметрів лінійної регресії, теоретичних рівнів і залишкових величин
- •6.3. Оцінка щільності та перевірка істотності кореляційного зв’язку
- •До розрахунку загальної дисперсії фондомісткості вугілля ( )
- •До розрахунку факторної дисперсії фондомісткості вугілля ( )
- •6.4. Рангова кореляція
- •До розрахунку коефіцієнта рангової кореляції
- •6.5. Оцінка узгодженості варіації атрибутивних ознак
- •Розподіл респондентів за віком і схильністю до ризику
- •Критичні значення
- •Розподіл пацієнтів клініки за результатами легеневих проб
- •Тема 7. Аналіз інтенсивності динаміки План
- •7.1. Суть і складові елементи динамічного ряду
- •Види рядів динаміки
- •Зімкнення динамічних рядів
- •7.2. Характеристики інтенсивності динаміки
- •Абсолютні та відносні характеристики динаміки
- •Аналітичні показники ряду динаміки
- •Середні показники динаміки
- •Розрахунок тенденції
- •Коефіцієнт випередження
- •Екстраполяція та інтерполяція.
- •Тема 8. Аналіз тенденції розвитку План
- •8.1. Середня абсолютна та відносна швидкість розвитку
- •8.2. Характеристика основної тенденції розвитку
- •Розрахунок ковзних середніх урожайності зернових
- •Динаміка видобутку нафти
- •8.3. Оцінка коливань та сталості динаміки
- •Щомісячна динаміка споживання електроенергії
- •Тренд і сезонні коливання продажу безалкогольних напоїв
- •До розрахунку залишкової дисперсії
- •Тема 9. Індекси План
- •9.1. Суть і функції індексів
- •9.2. Методологічні основи побудови зведених індексів
- •9.3. Агрегатна форма індексів
- •Формули індексів цін і фізичного обсягу за різних систем зважування
- •До розрахунку агрегатних індексів цін і фізичного обсягу
- •9.4. Середньозважені індекси
- •До розрахунку середньозважених індексів цін і фізичного обсягу
- •До розрахунку середньозважених індексів з відносними вагами
- •9.5. Взаємозв’язки індексів
- •9.6. Індекси середніх величин
- •До розрахунку індексів середніх величин
- •До розрахунку системи індексів структурних зрушень
- •Територіальні індекси
- •Товарна маса і ціни експорту
- •Індивідуальні індекси
- •Агрегатні індекси
- •Взаємозв'язок індексів
- •Правило зважування індексів.
- •Середні індекси
- •Розрахунок середнього арифметичного індексу фізичного обсягу
- •Розрахунок середнього геометричного індексу ціни
- •Індекси середніх величин.
- •Тема 10. Графічний метод у статистиці План
- •10.2. Типи діаграм
- •10.3. Картограми та картодіаграми
6.5. Оцінка узгодженості варіації атрибутивних ознак
Взаємозв’язки між атрибутивними ознаками аналізуються на підставі таблиць взаємної спряженості (співзалежності). Як приклад розглянемо табл. 7.9, в якій наведено результати соціологічного опитування населення щодо намірів прилучитися до ринку цінних паперів. Тих, хто не боїться ризикувати, класифікували як ризикованих інвесторів, тих, хто не уявляє ризику без гарантій, — обережними, а хто ризику уникає взагалі, — неризикованими.
Частоти комбінаційного розподілу респондентів за віком і схильністю до ризику концентруються навколо діагоналі з верхнього лівого кута в нижній правий. Серед молодих більшість готова ризикувати на ринку цінних паперів, у середній віковій групі готовий ризикувати один з п’яти, а половина не уявляє ризику без гарантій, у третій віковій групі на одного обережного припадають два неризиковані.
Таблиця 7.9
Розподіл респондентів за віком і схильністю до ризику
Вік х, років |
Тип інвестора у |
Разом fi0 |
||
Ризикований |
Обережний |
Неризикований |
||
16—30 |
24 |
12 |
4 |
40 |
31—50 |
20 |
50 |
30 |
100 |
51 і більше |
6 |
18 |
36 |
60 |
Разом f0j |
50 |
80 |
70 |
200 |
Характер розподілу частот, концентрація їх уздовж головної діагоналі свідчать про наявність стохастичного зв’язку між віком і схильністю до ризику.
Оцінка щільності стохастичного зв’язку ґрунтується на відхиленнях частот (часток) умовного та безумовного розподілів, тобто на відхиленнях фактичних частот fij від теоретичних Fij, пропорційних до підсумкових:
,
де
fi0
— підсумкові частоти за ознакою x;
f0j
— підсумкові частоти за ознакою
;
— обсяг сукупності
.
Якби схильність до ризику не залежала від віку, то кількість ризикованих серед молоді становила б
,
обережних у другій віковій групі
,
неризикованих у третій віковій групі
.
Абсолютну величину відхилень фактичних частот fij від пропорційних Fij характеризує квадратична спряженість 2 Пірсона:
.
За
відсутності стохастичного зв’язку
2 = 0.
На основі розподілу ймовірностей 2
перевіряється
істотність зв’язку. Критичні значення
2
для = 0,05
і числа ступенів свободи k = (mx – 1)
(my
– 1) наведено в табл. 7.10. Так, для k
= (3 – 1) (3 – 1) = 4 критичне значення
Фактичне значення
що значно перевищує критичне, а отже, з імовірністю 0,95 істотність зв’язку між віком і схильністю до ризику доведено.
Відносною мірою щільності стохастичного зв’язку слугує коефіцієнт взаємної спряженості (співзалежності). За умови, що mx = my використовують формулу Чупрова:
,
де mx — число груп за ознакою x; my — число груп за ознакою y. Оскільки за відсутності зв’язку між ознаками 2 = 0, то і С = 0. При функціональному зв’язку C 1. У разі, коли mx mx, віддають перевагу коефіцієнту спряженості Крамера:
,
де mmin — мінімальне число груп (mx або my).
У нашому прикладі mx = my = 3, а тому наведені формули коефіцієнта взаємної спряженості тотожні:
,
що свідчить про наявність зв’язку.
Таблиця 7.10
