Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теория вероятностей и МО.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.02 Mб
Скачать

7.Цепи Маркова.

(Андрей Андреевич Марков (1856-1922) – русский математик, академик)

Определение. Случайный процесс с дискретным временем называется марковским, если на любом шаге S вероятность P (S) перехода системы из состояния i , в состояние j зависит лишь от состояния А в которое попала система на (S—1) шаге, и не зависит от того, как и когда она в это состояние попала. Кратко это свойство формулируют так: при задан­ном настоящем будущее не зависит от прошлого. В силу это­го марковский процесс еще называют процессом без после­действия или однородным.

Определение. Цепью Маркова называется последовательность испытаний, в каждом из которых появляется только одно из k несовместных событий Ai из полной группы. При этом условная вероятность pij(s) того, что в s –ом испытании наступит событие Aj при условии, что в (s – 1) – ом испытании наступило событие Ai, не зависит от результатов предшествующих испытаний.

Независимые испытания являются частным случаем цепи Маркова. События называются состояниями системы, а испытания – изменениями состояний системы.

По характеру изменений состояний цепи Маркова можно разделить на две группы.

Определение. Цепью Маркова с дискретным временем называется цепь, изменение состояний которой происходит в определенные фиксированные моменты времени. Цепью Маркова с непрерывным временем называется цепь, изменение состояний которой возможно в любые случайные моменты времени.

8. Матрица переходов и граф состояний.

Определение. Однородной называется цепь Маркова, если условная вероятность pij перехода системы из состояния i в состояние j не зависит от номера испытания. Вероятность pij называется переходной вероятностью.

Пусть, число состояний конечно и равно k.

Тогда матрица, составленная из условных вероятностей перехода будет иметь вид:

Эта матрица называется матрицей перехода системы.

Т.к. в каждой строке содержаться вероятности событий, которые образуют полную группу, то сумма элементов каждой строки матрицы равна единице.

На основе матрицы перехода системы можно построить граф состояний системы, или размеченный граф состояний.

Пример. По заданной матрице перехода построить граф состояний.

Т.к. матрица четвертого порядка, то, соответственно, система имеет 4 возможных состояния.

S1

0,2 0,7

S2 0,4 S4

0,6 0,5

0,1 0,5

S3

На графе не отмечаются вероятности перехода системы из одного состояния в то же самое.

Пусть Pij(n) – вероятность того, что в результате n испытаний система перейдет из состояния i в состояние j, r – некоторое промежуточное состояние между состояниями i и j. Вероятности перехода из одного состояния в другое pij(1) = pij.

Тогда вероятность Pij(n) может быть найдена по формуле, называемой равенством Маркова:

Здесь т – число шагов (испытаний), за которое система перешла из состояния i в состояние r.

Равенство Маркова можно трактовать как видоизмененную формулу полной вероятности.

Используя матрицу перехода Р1, можно найти вероятности Pij(2) перехода из состояния i в состояние j за два шага , т.е. матрицу Р2:

так как при n=2 равенство Маркова – формула умножения матрицы P1 на P1 , следовательно, можно получить:

Пример. Задана матрица переходов Р1. Найти матрицу Р2.

Определение. Матрицы, суммы элементов всех строк которых равны единице, называются стохастическими.

Если при некотором п все элементы матрицы Рп не равны нулю, то такая матрица переходов называется регулярной.

Регулярные матрицы переходов задают цепь Маркова, в которой каждое состояние может быть достигнуто через п шагов из любого состояния. Такие цепи Маркова также называются регулярными.