
- •Содержание
- •Раздел 1. Алгебра и элементарные функции 3
- •Раздел 2. Начала математического анализа 17
- •Раздел 3. Геометрия 39
- •Раздел 4. Элементы теории вероятностей и математической статистики 126
- •I Общие рекомендации по выполнению самостоятельных работ
- •II Самостоятельная работа Раздел 1. Алгебра и элементарные функции
- •1.1. Составление кроссвордов по теме «Степени и логарифмы» (4 часа).
- •1.2. Гармонические колебания (4 часа).
- •Уравнение гармонического колебания
- •1.4. Вычисление предела последовательности (6 часов).
- •Раздел 2. Начала математического анализа
- •2.1. Производная неявной функции (4 часа).
- •2.2. Исследование функции на экстремум с помощью второй производной (5 часа).
- •2.3. Приложение производной к решению физических задач (11 часов).
- •2.4. Составление кросснамберов по теме «Определенный интеграл»
- •2.5 Вычисление объема тела и длины дуги кривой (12 часов) Вычисление объема тела вращения
- •Задания для самостоятельной работы по теме "Вычисление объема тела вращения"
- •Ответы для самостоятельной работы по теме "Вычисление объема тела вращения"
- •Вычисление длины дуги кривой
- •2.1. Нахождение длины дуги кривой, если линия задана параметрически
- •2.2. Нахождение длины дуги кривой, если линия задана в полярной системе координат
- •Задания для самостоятельной работы по теме "Вычисление длины дуги кривой"
- •Ответы для самостоятельной работы по теме "Вычисление длины дуги кривой"
- •2.6. Применение определенного интеграла к решению физических и технических задач (12 часов) Применение определенного интеграла к решению физических и технических задач
- •Задача о вычислении пути
- •Задача о вычислении работы переменной силы
- •Задача о силе давления жидкости
- •Систематизация знаний
- •Вопросы для самопроверки
- •Задания для самостоятельного работы
- •Ответы к заданиям для самостоятельной работы
- •Раздел 3. Геометрия
- •3.1. Уравнение прямой и плоскости в пространстве (10 часа).
- •Глава 1. Плоскость в пространстве.
- •1. Плоскость в пространстве - необходимые сведения.
- •1.1. Плоскость – основные понятия, обозначения и изображение.
- •1.2. Взаимное расположение плоскости и точки.
- •1.3. Прямая и плоскость в пространстве.
- •1.4. Взаимное расположение плоскостей.
- •1.5. Способы задания плоскости.
- •2. Нормальный вектор плоскости, координаты нормального вектора плоскости.
- •2.1. Нормальный вектор плоскости – определение, примеры, иллюстрации.
- •2.2. Координаты нормального вектора плоскости – нахождение координат нормального вектора плоскости по уравнению плоскости.
- •3. Уравнение плоскости, виды уравнения плоскости.
- •3.1. Уравнение плоскости – определение.
- •3.2. Общее уравнение плоскости.
- •3.3. Уравнение плоскости в отрезках.
- •3.4. Нормальное уравнение плоскости.
- •4. Общее уравнение плоскости - описание, примеры, решение задач.
- •4.1. Общее уравнение плоскости - основные сведения.
- •4.2. Общее уравнение плоскости, проходящей через точку.
- •4.3. Неполное общее уравнение плоскости.
- •5. Уравнение плоскости в отрезках - описание, примеры, решение задач.
- •5.1. Уравнение плоскости в отрезках – описание и примеры.
- •5.2. Приведение общего уравнения плоскости к уравнению плоскости в отрезках.
- •6. Нормальное уравнение плоскости - описание, примеры, решение задач.
- •6.1. Нормальное уравнение плоскости – описание и пример.
- •6.2. Приведение общего уравнения плоскости к нормальному виду.
- •7. Уравнение плоскости, которая проходит через три заданные точки, не лежащие на одной прямой.
- •7.1. Нахождение уравнения плоскости, проходящей через три заданные точки.
- •7.2. Примеры составления уравнения плоскости, проходящей через три заданные точки.
- •Глава 2. Прямая в пространстве.
- •1. Прямая в пространстве - необходимые сведения.
- •1.1. Прямая в пространстве – понятие.
- •1.2. Взаимное расположение прямых в пространстве.
- •1.3. Способы задания прямой в пространстве.
- •2. Уравнения прямой, виды уравнений прямой в пространстве.
- •2.1. Уравнения прямой в пространстве – начальные сведения.
- •2.2. Уравнения прямой в пространстве - это уравнения двух пересекающихся плоскостей.
- •2.3. Параметрические уравнения прямой в пространстве.
- •2.4. Канонические уравнения прямой в пространстве.
- •3. Уравнения прямой в пространстве - это уравнения двух пересекающихся плоскостей.
- •3.1. Уравнения двух плоскостей, задающих прямую линию в пространстве.
- •3.2. Нахождение координат точки, лежащей на прямой, по которой пересекаются две плоскости.
- •3.3. Направляющий вектор прямой, по которой пересекаются две плоскости.
- •3.4. Переход к параметрическим и каноническим уравнениям прямой в пространстве.
- •4. Параметрические уравнения прямой в пространстве - описание, примеры, решение задач.
- •4.1. Параметрические уравнения прямой в пространстве – описание и примеры.
- •4.2. Составление параметрических уравнений прямой в пространстве.
- •4.3. Частные случаи параметрических уравнений прямой в пространстве.
- •4.4. Переход от параметрических уравнений прямой в пространстве к другим видам уравнений прямой.
- •5. Канонические уравнения прямой в пространстве - теория, примеры, решение задач.
- •5.1. Канонические уравнения прямой в пространстве – описание и примеры.
- •5.2. Составление канонических уравнений прямой в пространстве.
- •5.3. Частные случаи канонических уравнений прямой в пространстве.
- •5.4. Канонические уравнения прямой проходящей через две заданные точки пространства.
- •5.5. Переход от канонических уравнений прямой в пространстве к другим видам уравнений прямой.
- •6. Уравнения прямой, которая проходит через две заданные точки в трехмерном пространстве.
- •3.2. Подготовка доклада на тему «История возникновения геометрии» (3 часа). Раздел 4. Элементы теории вероятностей и математической статистики
- •4.1. Подготовка доклада на тему «История возникновения теории вероятностей» (3 часа).
- •4.2. Подготовка доклада на тему «Теория вероятностей в современной жизни» (2 часа).
- •Требования к творческой работе студентов по «Математике»
- •Литература
- •Гбоу спо «Уфимский механико-технологический колледж»
- •Реферат Развитие математики в России
3.4. Переход к параметрическим и каноническим уравнениям прямой в пространстве.
Бывают случаи, в
которых использование уравнений двух
пересекающихся плоскостей для описания
прямой не совсем удобно. Некоторые
задачи проще решаются, если известны
канонические
уравнения прямой в пространстве
вида
или
параметрические
уравнения прямой в пространстве
вида
,
где x1,
y1,
z1
- координаты некоторой точки прямой,
ax,
ay,
az
- координаты направляющего вектора
прямой, а
-
параметр, принимающий произвольные
действительные значения. Опишем процесс
перехода от уравнений прямой вида
к
каноническим и параметрическим уравнениям
прямой в пространстве.
В предыдущих пунктах мы научились находить координаты некоторой точки прямой, а также координаты некоторого направляющего вектора прямой, которая задана уравнениями двух пересекающихся плоскостей. Этих данных достаточно, чтобы записать и канонические и параметрические уравнения этой прямой в прямоугольной системе координат в пространстве.
Рассмотрим решение примера, а после этого покажем еще один способ нахождения канонических и параметрических уравнений прямой в пространстве.
Пример. Прямая
в трехмерном пространстве задана
уравнениями двух пересекающихся
плоскостей
.
Напишите канонические и параметрические
уравнения этой прямой.
Решение. Вычислим
сначала координаты направляющего
вектора прямой. Для этого найдем векторное
произведение нормальных векторов
и
плоскостей
и
:
То есть,
.
Теперь определим
координаты некоторой точки заданной
прямой. Для этого найдем одно из решений
системы уравнений
.
Определитель
отличен
от нуля, возьмем его в качестве базисного
минора основной матрицы системы. Тогда
переменная z
является свободной, переносим слагаемые
с ней в правые части уравнений, и придаем
переменной z
произвольное значение
:
Решаем методом
Крамера полученную систему уравнений:
Следовательно,
Примем
,
при этом получаем координаты точки
прямой:
.
Теперь мы можем
записать требуемые канонические и
параметрические уравнения исходной
прямой в пространстве:
Ответ.
и
Вот второй способ решения этой задачи.
При нахождении координат некоторой точки прямой мы решаем систему уравнений . В общем случае ее решения можно записать в виде .
А это как раз
искомые параметрические уравнения
прямой в пространстве. Если каждое из
полученных уравнений разрешить
относительно параметра
и
после этого приравнять правые части
равенств, то получим канонические
уравнения прямой в пространстве
Покажем решение предыдущей задачи по этому методу.
Пример. Прямая в трехмерном пространстве задана уравнениями двух пересекающихся плоскостей . Напишите канонические и параметрические уравнения этой прямой.
Решение. Решаем данную систему из двух уравнений с тремя неизвестными (решение приведено в предыдущем примере, не будем повторяться). При этом получаем . Это и есть искомые параметрические уравнения прямой в пространстве.
Осталось получить
канонические уравнения прямой в
пространстве:
Полученные уравнения прямой внешне отличаются от уравнений, полученных в предыдущем примере, однако они эквивалентны, так как определяют одно и то же множество точек трехмерного пространства (а значит, одну и ту же прямую).
Ответ.
и