- •Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования
- •Учебно-методический комплекс
- •1. Рабочая учебная программа дисциплины
- •1.1. Цели и задачи дисциплины
- •1.2. Структура и объем дисциплины Распределение фонда времени по семестрам, неделям, видам занятий
- •1.3. Содержание дисциплины
- •1.4. Требования к уровню освоения дисциплины и формы текущего и промежуточного контроля
- •Примерный перечень вопросов для подготовки к экзамену по дисциплине «Теория принятия решений»
- •1.5. Содержание самостоятельной работы
- •Распределение самостоятельной работы студентов по темам с указанием времени
- •Содержание каждого вида самостоятельной работы и вида контроля
- •2. Учебно-методическое пособие по практическим занятиям Введение
- •2.1. Линейное программирование
- •2.1.1. Постановка задачи
- •2.1.2. Симплексный метод
- •2.1.3. Решение задачи линейного программирования средствами Excel
- •2.1.4. Двойственная задача и ее решение
- •2.2. Целочисленное программирование
- •2.2.1. Метод Гомори
- •2.2.2. Метод ветвей и границ
- •2.2.3. Алгоритм решения задачи целочисленного программирования средствами Excel
- •2.2.4. Транспортная задача
- •2.2.5. Решение транспортной задачи средствами Mathcad
- •2.2.6. Решение транспортной задачи средствами Microsoft Excel
- •2.2.7. Решение задачи о назначении средствами Mathcad
- •2.2.8. Решение задачи о назначении средствами Microsoft Excel
- •2.2.9. Решение задач нелинейного программирования средствами Microsoft Excel
- •2.3. Матричные игры
- •2.3.1. Основные понятия теории игр
- •2.3.2. Решение игр в чистых стратегиях (с седловой точкой)
- •2.3.3. Приведение решения матричной игры к решению задачи линейного программирования
- •2.3.4. Игры с природой
- •2.3.5. Критерии принятия решения
- •1. Критерий Байеса
- •2.4. Практические работы
- •2.4.1. Практическая работа №1
- •1.1. Одноиндексные задачи лп
- •1.2. Ввод исходных данных
- •1.3. Решение задачи
- •1.4. Целочисленное программирование
- •1.5. Двухиндексные задачи лп
- •1.6. Задачи с булевыми переменными
- •1.7. Возможные ошибки при вводе условий задач лп
- •2.4.2. Практическая работа № 2 «Одноиндексные задачи линейного программирования»
- •2.1. Теоретическая часть
- •Целевая функция (цф)
- •При ограничениях
- •19 Верхних и нижних стенок, 12 верхних и нижних стенок,
- •9 Боковых стенок 36 боковых стенок
- •2.4.3. Практическая работа № 3 «Анализ чувствительности одноиндексных задач линейного программирования»
- •3.1. Теоретическая часть
- •3.1.1. Задачи анализа оптимального решения на чувствительность
- •3.1.2. Графический анализ оптимального решения на чувствительность
- •3.1.3. Анализ оптимального решения на чувствительность в Excel
- •3.1.3.1. Отчет по результатам
- •3.1.3.2. Отчет по устойчивости
- •2.4.4. Практическая работа № 4 «Двухиндексные задачи линейного программирования. Стандартная транспортная задача»
- •4.1. Теоретическая часть
- •4.1.1. Стандартная модель транспортной задачи (тз)
- •4.1.2. Пример построения модели тз
- •2.4.5. Практическая работа № 5 «Двухиндексные задачи линейного программирования. Задача о назначениях»
- •5.1. Теоретическая часть
- •5.1.1. Задача о назначениях
- •5.1.2. Постановка задачи о назначениях
- •5.1.3. Рекомендации к решению задачи о назначениях
- •2.4.6. Практическая работа № 6 «Двухиндексные задачи линейного программирования. Организация оптимальной системы снабжения»
- •6.1. Постановка задачи
- •6.2. Рекомендации к решению задачи
- •2.4.7. Лабораторная работа № 7 «Двухиндексные задачи линейного программирования. Оптимальное распределение производственных мощностей»
- •7.1. Теоретическая часть
- •7.2. Постановка задачи распределения производственных мощностей
- •7.3. Построение и решение рз лп
- •2.5. Контрольные задания
- •2.5.1. Линейное программирование
- •2.5.2. Двойственные задачи
- •2.5.3. Целочисленное программирование
- •2.5.4. Транспортная задача
- •2.5.5. Матричные игры*)
- •2.5.6. Приведение решения матричной игры к решению задачи линейного программирования*)
- •2.5.7. Игры с природой
- •2.5.8. Нелинейное программирование
- •2.6. Задания для самостоятельного решения
- •2.6.1. Самостоятельная работа № 1
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.6.2. Самостоятельная работа № 2
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.6.3. Самостоятельная работа № 3
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.6.4. Самостоятельная работа № 4
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.6.5. Самостоятельная работа № 5
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •2.6.6. Самостоятельная работа № 6
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.7. Задания для тестирования Вариант № 1
- •3. Транспортная задача
- •Вариант № 2
- •3. Транспортная задача
- •Вариант № 3
- •3. Транспортная задача
- •Вариант № 4
- •3. Транспортная задача
- •Вариант № 5
- •3. Транспортная задача
- •Вариант № 6
- •3. Транспортная задача
- •Вариант № 7
- •3. Транспортная задача
- •Вариант № 8
- •3. Транспортная задача
- •Вариант № 9
- •3. Транспортная задача
- •Вариант № 10
- •3. Транспортная задача
- •Вариант № 11
- •3. Транспортная задача
- •Вариант № 12
- •3. Транспортная задача
- •Вариант № 13
- •3. Транспортная задача
- •Вариант № 14
- •3. Транспортная задача
- •Вариант № 15
- •3. Транспортная задача
- •Вариант № 16
- •3. Транспортная задача
- •Вариант № 17
- •3. Транспортная задача
- •Вариант № 18
- •3. Транспортная задача
- •Вариант № 19
- •3. Транспортная задача
- •Вариант № 20
- •3. Транспортная задача
- •Вариант № 21
- •3. Транспортная задача
- •Вариант № 22
- •3. Транспортная задача
- •Вариант № 23
- •3. Транспортная задача
- •Вариант № 24
- •3. Транспортная задача
- •Вариант № 25
- •3. Транспортная задача
- •Вариант № 26
- •3. Транспортная задача
- •Вариант № 27
- •3. Транспортная задача
- •Вариант № 28
- •3. Транспортная задача
- •3. Учебно-методическое обеспечение дисциплины
- •3.1. Перечень основной и дополнительной литературы
- •3.1.1. Основная литература:
- •3.1.2. Дополнительная литература:
- •3.2. Методические рекомендации преподавателю
- •3.3. Методические указания студентам по изучению дисциплины
- •3.4. Учебно-методическая карта дисциплины
- •3.5. Материально-техническое обеспечение дисциплины
- •3.6. Программное обеспечение использования современных информационно-коммуникативных технологий
- •3.7. Технологическая карта дисциплины Поволжский государственный университет сервиса
- •Решение задач линейного программирования симплекс-методом
- •Решение задач систем массового обслуживания
- •П.3.2. Решение задачи смо традиционными методами
- •П.3. Решение задачи смо с использованием системы Mathcad
2.1.4. Двойственная задача и ее решение
Каждой задаче линейного программирования можно определённым образом поставить в соответствие некоторую другую задачу линейного программирования, называемую сопряжённой или двойственной по отношению к исходной или прямой. Дадим определение двойственной задачи по отношению к общей задаче линейного программирования, состоящей в нахождении максимального значения функции при ограничениях «с недостатком».
|
Рис. 1.21. |
Две следующие задачи называются симметричными взаимно двойственными задачами линейного программирования:
Задача 1 |
Задача 2 |
|
|
|
|
|
|
Обе двойственные задачи линейного программирования обладают следующими свойствами:
1) в одной задаче ищут максимум целевой функции, в другой − минимум;
2) обе задачи являются стандартными задачами линейного программирования, причем в задаче о максимуме все неравенства вида «≤», а в задаче о минимуме − вида «≥»;
3) матрица системы ограничений одной задачи является транспонированной к матрице системы ограничений другой;
4) коэффициенты при переменных целевой функции одной задачи являются свободными членами ограничений другой;
5) число неравенств в системе ограничений одной задачи совпадает с числом переменных в другой задаче;
6) условия неотрицательности имеются в обеих задачах.
Свойствами двойственных задач следует руководствоваться при их составлении.
Лемма. Если X − план исходной задачи, а Y − план двойственной задачи, то значение целевой функции исходной задачи на плане X всегда не превосходит значения целевой функции двойственной задачи на плане Y , то есть
Связь между оптимальными решениями двойственных задач устанавливается теоремами о двойственности.
Теорема 1. Если одна из двойственных задач имеет оптимальное решение, то другая также имеет оптимальное решение. При этом для любых оптимальных планов
имеет место равенство
Следствие 1. Для разрешимости одной из задач двойственной пары необходимо и достаточно, чтобы множество допустимых планов каждой из двойственных задач было не пусто.
Следствие 2. Если целевая функция одной из задач двойственной пары не ограничена, то другая задача двойственной пары не имеет планов.
Следствие 3. Для оптимальности
планов
и
пары двойственных задач необходимо и
достаточно выполнение равенства
Следствие 4. Если в одной из взаимно двойственных задач нарушается единственность оптимального решения, то оптимальное решение двойственной задачи вырожденное.
Теорема 2. Планы
и
двойственных задач являются оптимальными
тогда и только тогда, когда для любого
значения
выполняется равенство
Если число неизвестных переменных, как в прямой, так и в двойственной задачах, образующих данную пару, равно двум, то решение этих задач можно находить геометрическим способом.
2.2. Целочисленное программирование
Значительная часть задач по смыслу может иметь решения только в целых числах; например, число турбин, судов, животных может быть только целым числом. Такие задачи решаются методами целочисленного программирования. Общая постановка задачи линейного программирования дополняется требованием о том, чтобы найденные переменные в оптимальном плане были целыми.
Методы целочисленной оптимизации можно разделить на три основные группы: а) методы отсечения; б) комбинаторные методы; в) приближённые методы.
Методы отсечения используют оптимальные решения, найденные для задач линейного программирования. Сужая область допустимых планов до целочисленных границ, т.е. отсекая нецелочисленные допустимые планы, методами отсечения получают решения задач целочисленного программирования.
Комбинаторные методы достигают решений задач целочисленного программирования, рассматривая возможные варианты целочисленных ограничений для задачи оптимизации.
Приближённые методы опираются на приближённые методы нахождения экстремумов функций нескольких переменных и используют различные способы округления полученных нецелочисленных решений до целых значений. Особенно удобно применять приближённые методы в случае решения задачи целочисленного программирования относительно двух переменных.
