
- •Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования
- •Учебно-методический комплекс
- •1. Рабочая учебная программа дисциплины
- •1.1. Цели и задачи дисциплины
- •1.2. Структура и объем дисциплины Распределение фонда времени по семестрам, неделям, видам занятий
- •1.3. Содержание дисциплины
- •1.4. Требования к уровню освоения дисциплины и формы текущего и промежуточного контроля
- •Примерный перечень вопросов для подготовки к экзамену по дисциплине «Теория принятия решений»
- •1.5. Содержание самостоятельной работы
- •Распределение самостоятельной работы студентов по темам с указанием времени
- •Содержание каждого вида самостоятельной работы и вида контроля
- •2. Учебно-методическое пособие по практическим занятиям Введение
- •2.1. Линейное программирование
- •2.1.1. Постановка задачи
- •2.1.2. Симплексный метод
- •2.1.3. Решение задачи линейного программирования средствами Excel
- •2.1.4. Двойственная задача и ее решение
- •2.2. Целочисленное программирование
- •2.2.1. Метод Гомори
- •2.2.2. Метод ветвей и границ
- •2.2.3. Алгоритм решения задачи целочисленного программирования средствами Excel
- •2.2.4. Транспортная задача
- •2.2.5. Решение транспортной задачи средствами Mathcad
- •2.2.6. Решение транспортной задачи средствами Microsoft Excel
- •2.2.7. Решение задачи о назначении средствами Mathcad
- •2.2.8. Решение задачи о назначении средствами Microsoft Excel
- •2.2.9. Решение задач нелинейного программирования средствами Microsoft Excel
- •2.3. Матричные игры
- •2.3.1. Основные понятия теории игр
- •2.3.2. Решение игр в чистых стратегиях (с седловой точкой)
- •2.3.3. Приведение решения матричной игры к решению задачи линейного программирования
- •2.3.4. Игры с природой
- •2.3.5. Критерии принятия решения
- •1. Критерий Байеса
- •2.4. Практические работы
- •2.4.1. Практическая работа №1
- •1.1. Одноиндексные задачи лп
- •1.2. Ввод исходных данных
- •1.3. Решение задачи
- •1.4. Целочисленное программирование
- •1.5. Двухиндексные задачи лп
- •1.6. Задачи с булевыми переменными
- •1.7. Возможные ошибки при вводе условий задач лп
- •2.4.2. Практическая работа № 2 «Одноиндексные задачи линейного программирования»
- •2.1. Теоретическая часть
- •Целевая функция (цф)
- •При ограничениях
- •19 Верхних и нижних стенок, 12 верхних и нижних стенок,
- •9 Боковых стенок 36 боковых стенок
- •2.4.3. Практическая работа № 3 «Анализ чувствительности одноиндексных задач линейного программирования»
- •3.1. Теоретическая часть
- •3.1.1. Задачи анализа оптимального решения на чувствительность
- •3.1.2. Графический анализ оптимального решения на чувствительность
- •3.1.3. Анализ оптимального решения на чувствительность в Excel
- •3.1.3.1. Отчет по результатам
- •3.1.3.2. Отчет по устойчивости
- •2.4.4. Практическая работа № 4 «Двухиндексные задачи линейного программирования. Стандартная транспортная задача»
- •4.1. Теоретическая часть
- •4.1.1. Стандартная модель транспортной задачи (тз)
- •4.1.2. Пример построения модели тз
- •2.4.5. Практическая работа № 5 «Двухиндексные задачи линейного программирования. Задача о назначениях»
- •5.1. Теоретическая часть
- •5.1.1. Задача о назначениях
- •5.1.2. Постановка задачи о назначениях
- •5.1.3. Рекомендации к решению задачи о назначениях
- •2.4.6. Практическая работа № 6 «Двухиндексные задачи линейного программирования. Организация оптимальной системы снабжения»
- •6.1. Постановка задачи
- •6.2. Рекомендации к решению задачи
- •2.4.7. Лабораторная работа № 7 «Двухиндексные задачи линейного программирования. Оптимальное распределение производственных мощностей»
- •7.1. Теоретическая часть
- •7.2. Постановка задачи распределения производственных мощностей
- •7.3. Построение и решение рз лп
- •2.5. Контрольные задания
- •2.5.1. Линейное программирование
- •2.5.2. Двойственные задачи
- •2.5.3. Целочисленное программирование
- •2.5.4. Транспортная задача
- •2.5.5. Матричные игры*)
- •2.5.6. Приведение решения матричной игры к решению задачи линейного программирования*)
- •2.5.7. Игры с природой
- •2.5.8. Нелинейное программирование
- •2.6. Задания для самостоятельного решения
- •2.6.1. Самостоятельная работа № 1
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.6.2. Самостоятельная работа № 2
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.6.3. Самостоятельная работа № 3
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.6.4. Самостоятельная работа № 4
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.6.5. Самостоятельная работа № 5
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •2.6.6. Самостоятельная работа № 6
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.7. Задания для тестирования Вариант № 1
- •3. Транспортная задача
- •Вариант № 2
- •3. Транспортная задача
- •Вариант № 3
- •3. Транспортная задача
- •Вариант № 4
- •3. Транспортная задача
- •Вариант № 5
- •3. Транспортная задача
- •Вариант № 6
- •3. Транспортная задача
- •Вариант № 7
- •3. Транспортная задача
- •Вариант № 8
- •3. Транспортная задача
- •Вариант № 9
- •3. Транспортная задача
- •Вариант № 10
- •3. Транспортная задача
- •Вариант № 11
- •3. Транспортная задача
- •Вариант № 12
- •3. Транспортная задача
- •Вариант № 13
- •3. Транспортная задача
- •Вариант № 14
- •3. Транспортная задача
- •Вариант № 15
- •3. Транспортная задача
- •Вариант № 16
- •3. Транспортная задача
- •Вариант № 17
- •3. Транспортная задача
- •Вариант № 18
- •3. Транспортная задача
- •Вариант № 19
- •3. Транспортная задача
- •Вариант № 20
- •3. Транспортная задача
- •Вариант № 21
- •3. Транспортная задача
- •Вариант № 22
- •3. Транспортная задача
- •Вариант № 23
- •3. Транспортная задача
- •Вариант № 24
- •3. Транспортная задача
- •Вариант № 25
- •3. Транспортная задача
- •Вариант № 26
- •3. Транспортная задача
- •Вариант № 27
- •3. Транспортная задача
- •Вариант № 28
- •3. Транспортная задача
- •3. Учебно-методическое обеспечение дисциплины
- •3.1. Перечень основной и дополнительной литературы
- •3.1.1. Основная литература:
- •3.1.2. Дополнительная литература:
- •3.2. Методические рекомендации преподавателю
- •3.3. Методические указания студентам по изучению дисциплины
- •3.4. Учебно-методическая карта дисциплины
- •3.5. Материально-техническое обеспечение дисциплины
- •3.6. Программное обеспечение использования современных информационно-коммуникативных технологий
- •3.7. Технологическая карта дисциплины Поволжский государственный университет сервиса
- •Решение задач линейного программирования симплекс-методом
- •Решение задач систем массового обслуживания
- •П.3.2. Решение задачи смо традиционными методами
- •П.3. Решение задачи смо с использованием системы Mathcad
2.3.3. Приведение решения матричной игры к решению задачи линейного программирования
Пусть игра m×n
задана платёжной матрицей
.
Игрок A применяет стратегии A1,
A2, …, Am,
а игрок B − стратегии B1,
B2, …, Bn.
Смешанными стратегиями игроков
A и B называют векторы
,
координаты которых равны вероятностям
применения игроками своих чистых A1,
A2, …, Am
и B1, B2,
…, Bn
соответственно.
События, состоящие в том, что игроки применяют какую-либо из своих чистых стратегий, образуют для каждого игрока полную группу событий. Следовательно, сумма координат векторов P и Q равна единице:
Кроме того, по свойству вероятности, для координат смешанных стратегий выполняются неравенства:
Оптимальная стратегия P* обеспечивает игроку A средний выигрыш, не меньший цены игры v, при любой стратегии игрока B и выигрыш, равный цене игры v, при оптимальной стратегии Q* игрока B.
Без ограничения общности полагаем далее, что v > 0. Применяя оптимальную стратегию P* против любой чистой стратегии Qj игрока B, игрок A получает средний выигрыш или математическое ожидание выигрыша
Таким образом, вычисляя средние выигрыши игрока A для каждой из чистых стратегий игрока B, получаем систему неравенств
Разделив каждое из неравенств на цену игры v и вводя новые переменные
получим систему
Целевую функцию для игрока A найдём, учитывая, что он стремится получить максимальный выигрыш в игре. Разделив равенство
на цену игры v, получим равенство
которое будет иметь наименьшее значение при достижении игроком A максимального выигрыша. Поэтому в качестве целевой функции можно взять функцию
и задачу линейного программирования
сформулировать следующим образом:
определить значения переменных
так, чтобы они удовлетворяли линейным
ограничениям (3.8) и при этом целевая
функция (3.9) имела минимальное значение.
Решая задачу (3.8)−(3.9), получаем оптимальную
стратегию задачи линейного программирования
,
для которой значение целевой функции
равно
Находим цену игры v:
Вычисляем координаты смешанной оптимальной стратегии P* игрока A:
Чтобы найти оптимальную стратегию
игрока B, составляем двойственную
к (3.8)−(3.9) задачу и решаем ее. Получаем
оптимальную стратегию
и вычисляем координаты оптимальной
смешанной стратегии Q* игрока
B:
В ходе решения двойственной задачи
определяется максимальное значение
целевой функции
,
и цена игры может быть определена из
равенства
Таким образом, найдено оптимальное решение для игры.
2.3.4. Игры с природой
В условиях отсутствия достаточно полной информации о действиях противоположной стороны возникает неопределённость в принятии решения. Так, в задачах, приводящих к игровым, эта неопределённость может быть вызвана разными причинами: отсутствием информации об условиях, в которых происходит действие; неоднозначным характером развития событий в будущем; невозможностью получения полной информации о рассматриваемых процессах.
Условия, в которых может происходить действие игры, зависят не от сознательных действий другого игрока, а от объективных факторов, которые принято называть "природой". Такие игры называются играми с природой.
С целью уменьшения неблагоприятных последствий при принятии решения следует учитывать степень риска и имеющуюся информацию. Таким образом, лицо, принимающее решение (статистик), вступает в игровые отношения с природой. Любую хозяйственную деятельность человека можно рассматривать как игру с природой. В широком смысле под «природой» будем понимать совокупность неопределённых факторов, влияющих на эффективность принимаемых решений.
Задачей экономиста или статистика является принятие наилучшего управленческого решения в каждой конкретной ситуации. Качество принимаемого решения зависит от информированности лица, принимающего решение (ЛПР), о ситуации, в которой принимается решение. В случае неопределённости ошибки в принятии решения наиболее вероятны. Умение использовать даже неполную информацию для обоснования принимаемых решений − это задача экономиста, а в решении её помогает математическая теория игры с природой.
От обычной матричной игры игру с природой отличает безразличие природы к результату игры и возможность получения статистиком дополнительной информации о состоянии природы.
Игры с природой дают математическую
модель теории принятия решений в условиях
частичной неопределённости. Для её
описания используем обозначения
матричных игр. Множество стратегий
(состояний) природы обозначим В,
отдельное состояние её −
.
Множество стратегий (решений) статистика
обозначим А, а его отдельную стратегию
в игре с природой −
.
Человек в играх с природой старается действовать осмотрительно, используя, например, минимаксную стратегию, позволяющую получить наименьший проигрыш.
Природа действует совершенно случайно, возможные стратегии определяются как её состояния; например, условия погоды в данном районе, спрос на определённую продукцию, объём перевозок, сочетание производственных факторов и т. д. В некоторых задачах для состояний природы может быть задано распределение вероятностей, в других − оно неизвестно.
Условия игры с природой задаются платёжной матрицей
Элемент aij называется выигрышем статистика А, если он использует стратегию Аi, когда природа находится в состоянии Вj. Фактически это может быть значение некоторой функции, характеризующей эффективность принятого статистиком решения.
При решении игры с природой допускается исключение доминируемых стратегий только для стратегий статистика. Стратегии природы исключать нельзя, поскольку она может реализовать состояния, заведомо не выгодные для неё.
В ряде случаев при решении игры с природой используется матрица рисков R. Элементы rij матрицы рисков равны разности между максимально возможным выигрышем статистика А и тем выигрышем, который он получит в тех же условиях Вj, если применит стратегию Аi, то есть
где
.