
- •Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования
- •Учебно-методический комплекс
- •1. Рабочая учебная программа дисциплины
- •1.1. Цели и задачи дисциплины
- •1.2. Структура и объем дисциплины Распределение фонда времени по семестрам, неделям, видам занятий
- •1.3. Содержание дисциплины
- •1.4. Требования к уровню освоения дисциплины и формы текущего и промежуточного контроля
- •Примерный перечень вопросов для подготовки к экзамену по дисциплине «Теория принятия решений»
- •1.5. Содержание самостоятельной работы
- •Распределение самостоятельной работы студентов по темам с указанием времени
- •Содержание каждого вида самостоятельной работы и вида контроля
- •2. Учебно-методическое пособие по практическим занятиям Введение
- •2.1. Линейное программирование
- •2.1.1. Постановка задачи
- •2.1.2. Симплексный метод
- •2.1.3. Решение задачи линейного программирования средствами Excel
- •2.1.4. Двойственная задача и ее решение
- •2.2. Целочисленное программирование
- •2.2.1. Метод Гомори
- •2.2.2. Метод ветвей и границ
- •2.2.3. Алгоритм решения задачи целочисленного программирования средствами Excel
- •2.2.4. Транспортная задача
- •2.2.5. Решение транспортной задачи средствами Mathcad
- •2.2.6. Решение транспортной задачи средствами Microsoft Excel
- •2.2.7. Решение задачи о назначении средствами Mathcad
- •2.2.8. Решение задачи о назначении средствами Microsoft Excel
- •2.2.9. Решение задач нелинейного программирования средствами Microsoft Excel
- •2.3. Матричные игры
- •2.3.1. Основные понятия теории игр
- •2.3.2. Решение игр в чистых стратегиях (с седловой точкой)
- •2.3.3. Приведение решения матричной игры к решению задачи линейного программирования
- •2.3.4. Игры с природой
- •2.3.5. Критерии принятия решения
- •1. Критерий Байеса
- •2.4. Практические работы
- •2.4.1. Практическая работа №1
- •1.1. Одноиндексные задачи лп
- •1.2. Ввод исходных данных
- •1.3. Решение задачи
- •1.4. Целочисленное программирование
- •1.5. Двухиндексные задачи лп
- •1.6. Задачи с булевыми переменными
- •1.7. Возможные ошибки при вводе условий задач лп
- •2.4.2. Практическая работа № 2 «Одноиндексные задачи линейного программирования»
- •2.1. Теоретическая часть
- •Целевая функция (цф)
- •При ограничениях
- •19 Верхних и нижних стенок, 12 верхних и нижних стенок,
- •9 Боковых стенок 36 боковых стенок
- •2.4.3. Практическая работа № 3 «Анализ чувствительности одноиндексных задач линейного программирования»
- •3.1. Теоретическая часть
- •3.1.1. Задачи анализа оптимального решения на чувствительность
- •3.1.2. Графический анализ оптимального решения на чувствительность
- •3.1.3. Анализ оптимального решения на чувствительность в Excel
- •3.1.3.1. Отчет по результатам
- •3.1.3.2. Отчет по устойчивости
- •2.4.4. Практическая работа № 4 «Двухиндексные задачи линейного программирования. Стандартная транспортная задача»
- •4.1. Теоретическая часть
- •4.1.1. Стандартная модель транспортной задачи (тз)
- •4.1.2. Пример построения модели тз
- •2.4.5. Практическая работа № 5 «Двухиндексные задачи линейного программирования. Задача о назначениях»
- •5.1. Теоретическая часть
- •5.1.1. Задача о назначениях
- •5.1.2. Постановка задачи о назначениях
- •5.1.3. Рекомендации к решению задачи о назначениях
- •2.4.6. Практическая работа № 6 «Двухиндексные задачи линейного программирования. Организация оптимальной системы снабжения»
- •6.1. Постановка задачи
- •6.2. Рекомендации к решению задачи
- •2.4.7. Лабораторная работа № 7 «Двухиндексные задачи линейного программирования. Оптимальное распределение производственных мощностей»
- •7.1. Теоретическая часть
- •7.2. Постановка задачи распределения производственных мощностей
- •7.3. Построение и решение рз лп
- •2.5. Контрольные задания
- •2.5.1. Линейное программирование
- •2.5.2. Двойственные задачи
- •2.5.3. Целочисленное программирование
- •2.5.4. Транспортная задача
- •2.5.5. Матричные игры*)
- •2.5.6. Приведение решения матричной игры к решению задачи линейного программирования*)
- •2.5.7. Игры с природой
- •2.5.8. Нелинейное программирование
- •2.6. Задания для самостоятельного решения
- •2.6.1. Самостоятельная работа № 1
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.6.2. Самостоятельная работа № 2
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.6.3. Самостоятельная работа № 3
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.6.4. Самостоятельная работа № 4
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.6.5. Самостоятельная работа № 5
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •2.6.6. Самостоятельная работа № 6
- •2. Задачи работы:
- •3. Общее описание задания
- •4. Варианты задания
- •5. Требования к оформлению результатов
- •2.7. Задания для тестирования Вариант № 1
- •3. Транспортная задача
- •Вариант № 2
- •3. Транспортная задача
- •Вариант № 3
- •3. Транспортная задача
- •Вариант № 4
- •3. Транспортная задача
- •Вариант № 5
- •3. Транспортная задача
- •Вариант № 6
- •3. Транспортная задача
- •Вариант № 7
- •3. Транспортная задача
- •Вариант № 8
- •3. Транспортная задача
- •Вариант № 9
- •3. Транспортная задача
- •Вариант № 10
- •3. Транспортная задача
- •Вариант № 11
- •3. Транспортная задача
- •Вариант № 12
- •3. Транспортная задача
- •Вариант № 13
- •3. Транспортная задача
- •Вариант № 14
- •3. Транспортная задача
- •Вариант № 15
- •3. Транспортная задача
- •Вариант № 16
- •3. Транспортная задача
- •Вариант № 17
- •3. Транспортная задача
- •Вариант № 18
- •3. Транспортная задача
- •Вариант № 19
- •3. Транспортная задача
- •Вариант № 20
- •3. Транспортная задача
- •Вариант № 21
- •3. Транспортная задача
- •Вариант № 22
- •3. Транспортная задача
- •Вариант № 23
- •3. Транспортная задача
- •Вариант № 24
- •3. Транспортная задача
- •Вариант № 25
- •3. Транспортная задача
- •Вариант № 26
- •3. Транспортная задача
- •Вариант № 27
- •3. Транспортная задача
- •Вариант № 28
- •3. Транспортная задача
- •3. Учебно-методическое обеспечение дисциплины
- •3.1. Перечень основной и дополнительной литературы
- •3.1.1. Основная литература:
- •3.1.2. Дополнительная литература:
- •3.2. Методические рекомендации преподавателю
- •3.3. Методические указания студентам по изучению дисциплины
- •3.4. Учебно-методическая карта дисциплины
- •3.5. Материально-техническое обеспечение дисциплины
- •3.6. Программное обеспечение использования современных информационно-коммуникативных технологий
- •3.7. Технологическая карта дисциплины Поволжский государственный университет сервиса
- •Решение задач линейного программирования симплекс-методом
- •Решение задач систем массового обслуживания
- •П.3.2. Решение задачи смо традиционными методами
- •П.3. Решение задачи смо с использованием системы Mathcad
2.2.7. Решение задачи о назначении средствами Mathcad
Постановка задачи А. Пусть на предприятии имеется n типов универсального оборудования и требуется изготовить n видов изделий. Известно время изготовления каждого изделия на всех видах оборудования. Требуется определить: какое изделие, и на каком оборудовании необходимо изготавливать, чтобы суммарное время изготовления всех изделий было минимально.
Постановка задачи В. Для реализации производственного процесса необходимо выполнить n операций. Имеется n рабочих, которые способны осуществить их, и время выполнения каждым рабочим любой из n операций. Требуется определить: кто и какую операцию должен выполнять, чтобы суммарное время выполнения всего производственного процесса было минимально.
Постановка задачи С. В конструкторском бюро требуется разработать проект машины, состоящей из n узлов. К их разработке можно привлечь n конструкторов. Известно время, затрачиваемое каждым конструктором на разработку отдельного узла. Требуется определить: какие конструкторы должны разрабатывать тот или иной узел, чтобы суммарное время проектирования машины было минимально.
Постановка задачи D. Пусть управление механизации имеет 5 кранов, и требуется возвести 5 объектов. Известна себестоимость строительства каждым краном отдельного объекта. Требуется так распределить машины по объектам, чтобы обеспечить возведение всех объектов с минимальными суммарными затратами.
Введем сначала поясняющий текст в рабочем листе. Для этого сперва разместим курсор (визир – красный крестик) в месте ввода текста. Затем выберем (щелчком мыши или с помощью клавиатуры) пункт Insert (Вставка) главного меню Mathcad. В появившемся падающем меню выберем пункт Text Region (Текстовая область) или в месте расположения курсора нажмем клавишу с двойной кавычкой (команда для ввода текста). В обоих случаях появится шаблон, указывающий место и начало ввода текста, который и будет введен после этого. Текстовая область начнет автоматически увеличиваться по мере ввода текста. По окончании этой операции выведем курсор (маркер ввода – красная вертикальная черточка) за рамки текстовой области.
Далее введем критерий оптимизации – целевую функцию. Для этого вначале поместим курсор в месте ввода математического выражения. Затем начнем ввод с нажатия соответствующих клавиш. Сначала введем имя критерия оптимизации с аргументами, записанными через запятые и заключенными в скобки. Далее нажмем комбинацию клавиш Shift+: (двоеточие) для ввода знака присваивания :=. На месте правой метки вводим все выражение критерия оптимизации.
Аналогично вводятся начальные приближения.
Для решения задачи используем блок функций Given ... Minimize. Для этого нужно:
ввести, если необходимо, комментарии, нажав клавишу с двойной кавычкой;
ввести ключевое слово Given;
ввести систему ограничений. При вводе ее используйте жирный знак равенства, вызвав его нажатием комбинации клавиш Ctrl+=;
ввести граничные значения (рис. 2.11);
ввести вектор-столбец искомых параметров, используя диалоговое окно Insert Matrix (Вставить матрицу). Для этого щелкните по левой верхней кнопке на панели инструментов Matrix (Матрица) или нажмите комбинацию клавиш Ctrl+M. В появившемся диалоговом окне Insert Matrix в поле Rows (Строки) число строк (элементов вектора-столбца) должно быть равно 9, а в поле Columns (Столбцы) – 1;
ввести знак присваивания, нажав комбинацию клавиш Shift+: (двоеточие);
ввести функцию Minimize с искомыми параметрами, используя диалоговое окно Insert Function (Вставить функцию), вызвав его нажатием комбинации клавиш Ctrl+E;
ввести вектор-столбец искомых параметров и знак «равно».
|
Рис. 2.11. |
На рис. 2.12 показан процесс и результаты решения задачи о назначении. Оптимальное распределение зафиксировано в векторе (X11 X12 Х21 ...). Из полученного решения видно, что Х12 = 1, Х21 = 1 и Х33 = 1. Это означает: чтобы оптимально распределить три крана на три объекта, необходимо первый кран направить на второй объект, второй на первый, а третий – на третий. Первая цифра в переменной X определяет машину, а вторая – объект работы. При таком распределении кранов по объектам минимальные суммарные затраты Y составят 100 условных единиц.
|
Рис. 2.12. |