- •Введение
- •Глава 1. Виды ионизирующих излучений и единицы измерения
- •Доза излучения
- •[Рентген, Гр, рад, Зв, бэр]
- •Количественные показатели в радиоэкологии
- •Радиоэкологическое нормирование
- •Потоковые характеристики поля излучения
- •Дозовые характеристики поля излучения
- •2, 5, 6, 8 – Фотоэффект; 3, 4, 7, 9 – Комптон эффект;
- •Зависимость коэффициента качества к от полной лпэ,к(l)
- •Коэффициенты качества различных видов ионизирующих излучений при хроническом облучении всего тела
- •Коэффициенты качества ионизирующего излучения
- •Коэффициенты w для различных органов
- •Радиационный риск
- •Расчет мощности дозы -излучения
- •Линейные коэффициенты ослабления и массовые коэффициенты поглощения энергии am для узкого пучка -излучения
- •Характеристики -излучения некоторых радиоактивных нуклидов
- •1.5 Расчет дозы ионизирующих излучений
- •Глава 2 явление радиоактивности и законы радиоактивного распада
- •2.1 Строение атомного ядра
- •2.2 Естественная радиоактивность
- •2.4 Законы радиоактивного распада
- •Характеристика некоторых радионуклидов
- •2.5 Равновесие при радиоактивном распаде
- •2.6 Частные случаи радиоактивного равновесия
- •2.7 Вид и энергия излучения радионуклида
- •Глава 3 радиоактивное загрязнение
- •3.1 Источники ионизирующих излучений в окружающей среде
- •3.1.1 Естественные источники излучений
- •3.1.2 Антропогенные источники ионизирующих излучений
- •3.2 Радиационная обстановка на территории России и стран снг
- •Основные источники излучений и средняя облучаемость населения стран снг (КривохатскийА.С., 1993)
- •Стран снг и рекомендуемых дозовых пределов.
- •Связанного с аварией на по «Маяк» в 1957 г.
- •Загрязнением радионуклидами выброса Чернобыльской аварии.
- •Средние эффективные эквивалентные дозы в течение первого года после Чернобыльской аэс для ряда стран Европы, мкЗв*
- •Опасности в российском секторе Арктики.
- •На территории Российской Федерации.
- •Глава 4 радиационная безопасность и защита от ионизирующих излучений
- •4.1 Миграция радионуклидов в экосистеме
- •4.2 Биологическое действие радиации
- •Радиобиологические эффекты
- •Радиочувствительность биологических видов к гамма-излучению
- •4.2.1 Внешнее и внутреннее облучение
- •4.3 Нормы радиационной безопасности (нбр)
- •4.3.1 Основные принципы и определения
- •4.3.2 Дозовые пределы облучения
- •Дозовые пределы внешнего и внутреннего облучения, Зв за год
- •4.3.3 Допустимые уровни внутреннего и внешнего облучения
- •Допустимое загрязнение поверхности дза, част./(см2мин)
- •4.4 Защита от внешнего облучения
- •Пробеги - частиц r и максимальные пробеги - частиц r в воздухе, мягкой биологической ткани и алюминии
- •4.5 Проживание и ведение сельскохозяйственного производства на территориях, загрязненных радионуклидами
- •Мероприятия по снижению содержания радионуклидов в продукции растениеводства
- •Мероприятия по снижению содержания радионуклидов в продукции животноводства
- •Глава 5. Отбор и подготовка проб для определения суммарной объемной (оа) и удельной (уа) активности экспрессными методами
- •5. 1 Отбор и подготовка проб для радиохимического анализа
- •Сроки и нормы отбора проб объектов ветеринарного надзора исследования на радиоактивность.
- •Примерный выход золы из некоторых видов проб (% к сырой массе)
- •5.2 Подготовка проб к исследованию
- •5.3 Методы обнаружения и регистрации ионизирующих излучений
- •5. 4 Сцинтилляционный (люминесцентный) метод регистрации излучений
- •Глава 6 Лабораторно-практические задания
- •6.1 Задачи и упражнения для самостоятельного решения
- •Характеристика радионуклидов
- •6.2 Вопросы для тестовых заданий:
- •6.3 Лабораторная работа «Обнаружение и оценка уровня ионизирующего излучения»
- •Словарь понятий и терминов
- •Приложения
- •Соотношение между единицами измерения дозиметрических величин
- •Множители и приставки для обозначения десятичных кратных и дольных единиц
- •Примеры расчетов при переходе от внесистемных единиц к единицам си
- •Толщина защиты из свинца (в мм) в зависимости от кратности ослабления и энергии гамма-излучения (широкий пучок от точечного источника)
- •Некоторые допустимые уровни и дозовые характеристики
- •Основные Защитные экраны атмосферы от жесткой солнечной радиации
- •Интенсивность энергии в спектре солнечной радиации
- •Взаимосвязь солнечного ветра с магнитном полем Земли
- •Основные элементы цепи распада 239Pu
- •Критерии оценки безопасности
- •Водо-водяном энергетическом реакторе (ввэр)
- •Средние эффективные эквивалентные дозы в течение первого года после Чернобыльской аэс для ряда стран Европы, мкЗв*
- •Атомные электростанции, расположенные на территории России
- •Радиационная экология Учебно-методическое пособие
5. 4 Сцинтилляционный (люминесцентный) метод регистрации излучений
В некоторых веществах (например, фосфатах) под действием излучений происходят ионизация и возбуждение атомов. При переходе атомов из ионизированного и возбужденного состояний в основное высвечивается энергия в виде вспышки света (сцинтилляции), которая может быть зарегистрирована различными способами. Лучший из них состоит в преобразовании энергии света в электрический сигнал с помощью оптически связанного со сцинтиллятором фотоэлектронного умножителя (ФЭУ).
Фотоэлектронный умножитель совмещает свойства фотоэлемента и усилителя тока с большим коэффициентом усиления (106-109) ФЭУ состоит из фотокатода, анода и диодов (эмиттеров-1 Э-6Э) либо покрытых сурьмяно-цезиевой смесью, либо изготовленных из специальных сплавов алюминия, магния и серы, обладающих большим коэффициентом вторичной эмиссии электронов. Вся система ФЭУ размещена в стеклянном баллоне с высоким вакуумом, необходимым для сохранения поверхностей фотослоя и диодов, а также для свободного движения электронов.
В сцинтилляционном счетчике ФЭУ работает в импульсивном режиме. Под действием светового импульса, возникшего в сцинтилляторе, из фотокатода за счет фотоэффекта выбиваются электроны, которые собираются электрическим полем и направляются на первый диод, ускоряясь до энергии, достаточной для выбивания вторичных электронов из следующего диода (рис.21). Умножение числа электронов происходит при попадании потока первичных электронов на эмиттер. Выбитые при ударе электроны фокусируются на последующий диод, из которого они вновь выбивают примерно удвоенное количество электронов и т. д. Таким образом, лавина электронов возрастает от катода к аноду; происходит преобразование очень слабых световых вспышек, возникающих в сцинтилляторе, в регистрируемые электрические импульсы.
Сцинтилляционные счетчики обладают более высокой эффективностью счета (до 100%) и разрешающей способностью по сравнению с газоразрядными счетчиками. Разрешающая способность
Рисунок 21. Сцинтилляционный счетчик.
сцинтилляционных счетчиков достигает 10-5 с при регистрации а-частиц и 10-8 с при регистрации а-частиц и у-квантов. Однако указанные характеристики зависят от примененного сцинтиллятора. По составу сцинтилляторы делят на неорганические и органические, а по агрегатному состоянию – на твердые, пластические, жидкие и газовые. Из неорганических сцинтилляторов для регистрации бета- и гамма-излучений удобно использовать йодистый натрий, (цезий), активированный талием- NaI(TL), а также вольфрамат кальция – СаWO4, поскольку они могут быть получены в виде больших прозрачных монокристаллов. Для регистрации нейтронов применяют сцинтилляторы из йодистого лития – LiI(Sn), а тяжелых частиц (а-частиц, осколков деления) – сцинтилляторы на основе сернистого цинка (кадмия), активированного серебром ZnS(Аg). Сернистый цинк и сернистый кадмий представляют собой мелкие кристаллики, которые обычно наносят тонким слоем на стеклянную подложку, так как только тонкие слои таких кристаллических порошков прозрачны для светового излучения. Неорганические сцинтилляторы обладают довольно большим временем высвечивания (большое мертвое время), >10-6 с.
Из органических сцинтилляторов используют монокристаллы антрацена (С14Н10), стиблена (С14Н12), пара-терфинила (С13Н14) и др.; пластмассы (твердые растворы сцинтилляторов на основе полистирола и поливинилтолуола), жидкие фосфоры (например, раствор терфинила) и инертные газы -гелий, аргон, неон и др. Органические и газовые сцинтилляторы характеризуются очень малым временем высвечивания (10-8 10-9 с ).
Весь сцинтилляционный счетчик (сцинтиллятор, световод и ФЭУ) заключен в светонепроницаемый кожух, чтобы исключить попадание постороннего света на фотокатод и диоды ФЭУ. Умножитель защищен от внешних электрических и магнитных электронных полей, которые нарушают фокусировку.
