Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fiza.docx
Скачиваний:
9
Добавлен:
01.07.2025
Размер:
390.57 Кб
Скачать

171. Двигательный анализатор.

Двигательный анализатор тесно связан с функцией моторной коры, нейроны которой посылают импульсы к передним отделам спинного мозга и к нейронам ядер двигательных черепно-мозговых нервов, а также к таламусу, к базальным ядрам, красному ядру и мозжечку. Это прямые связи, по которым идут «приказы» от коры больших полушарий к мышцам. При возникновении движений по этим «приказам» в проприоцепторах появляются нервные импульсы, идущие по аферентным (чувствительным) нервным волокнам двигательного анализатора от мышц к коре больших полушарий, через межпозвоночные нервные узлы, задние корешки спинного мозга, продолговатый мозг, таламус. Помимо этого пути, проприоцептивные сигналы могут достигать коры головного мозга через ретикулярную систему и мозжечок. Двигательный анализатор участвует в поддержании постоянного тонуса (напряжения) мышц тела и координации движений. У высших животных и человека двигательный анализатор моделирует движение, создает как бы образ движения, которое предстоит совершить, и постоянно сличает реальный поток афферентных импульсов от движения мышц с заранее созданным его образом — планом (механизм «акцептора действия», по П. К. Анохину). В этом смысле двигательный анализатор нередко называют кинестетическим анализатором. В левой лобной доле (нижняя лобная извилина) находится речедвигательный анализатор. По И. П. Павлову, это «базальный компонент», нейрофизиологическая основа абстрактного мышления человека.

Двигательные функции. Корковый отдел двигательного анализатора расположен главным образом в передней центральной извилине, кпереди от центральной (Роландовой) борозды. В этой области находятся нервные клетки, с деятельностью которых связаны все движения организма. Отростки крупных нервных клеток, находящихся в глубоких слоях коры, спускаются в продолговатый мозг, где значительная часть их перекрещивается, т. е. переходит на противоположную сторону. После перехода они опускаются по спинному мозгу, где перекрещивается остальная часть. В передних рогах спинного мозга они вступают в контакт с находящимися здесь двигательными нервными клетками. Таким образом, возбуждение, возникшее в коре, доходит до двигательных нейронов передних рогов спинного мозга и затем уже по их волокнам поступает к мышцам. Ввиду того, что в продолговатом, а частично и в спинном мозгу происходит переход (перекрест) двигательных путей на противоположную сторону, возбуждение, возникшее в левом полушарии головного мозга, поступает в правую половину тела, а в левую половину тела поступают импульсы из правого полушария.

Положение некоторых корковых концов различных анализаторов (ядер) по отношению к извилинам и долям полушарий большого мозга у человека:

1. Ядро двигательного анализатора находится в основном в так называемой двигательной области коры, к которой относятся предцентральная извилина и парацентральная долька на медиальной поверхности полушария. В 5-м слое коры предцентральной извилины залегают гигантопирамидальные нейроны (клетки Беца).

2. В области нижней теменной дольки, в надкраевой извилине находится ядро двигательного анализатора, функциональное значение которого состоит в осуществлении синтеза всех целенаправленных сложных комбинированных движений. Это ядро асимметрично. У правшей оно находится в левом, а у левшей — в правом полушарии. Способность координировать эти сложные целенаправленные движения приобретается индивидуумом в течение жизни в результате практической деятельности и накопления опыта. Осуществление целенаправленных движений происходит за счет образования временных связей между клетками, расположенными в предцентральной и надкраевой извилинах.

3. Ядро двигательного анализатора письменной речи (анализатора произвольных движений, связанных с написанием букв и других знаков) находится в заднем отделе средней лобной извилины. Оно тесно прилежит к тем отделам предцентральной извилины, которым присуща функция двигательного анализатора руки и сочетанного поворота головы и глаз в противоположную сторону.

  1. Ядро двигательного анализатора артикуляции речи (речедвигательный анализатор) располагается в задних отделах нижней лобной извилины. Это ядро граничит с теми отделами предцентральной извилины, которые являются анализаторами движений, производимых при сокращении мышц головы и шеи. Это и понятно, так как в речедвигательном анализаторе осуществляется анализ движений всех мышц: губ, щек, языка. Строение двигательного анализатора Периферической  частью  двигательного анализатора  служат внутренние рецепторы органов движения — мышц, суставов и сухожилий. Они получают раздражения во время движения этих органов и, посылая импульсы в кору полушарий, сообщают о состоянии органов движения и о тех действиях, которые человек совершает с их помощью. Проводящий  отдел Возбуждение,  возникшее  в рецепторах двигательного анализатора по центростреми-тельным нервам через задние (чувствительные) корешки проводится в спинной мозг. По восходящим проводящим путям оно передается в кору головного мозга. Центральная часть двигательного анализатора — это чувствительно-двигательная зона коры головного мозга, а именно передняя центральная извилина. Существование   двигательного    анализатора   можно доказать с помощью простого эксперимента. Закройте глаза и примите любую позу, а затем двигайте или ногой. Не видя этих движений, вы можете подробно рассказать о них. Существование двигательного анализатора было выяснено в наблюдениях   за   больными, у которых поражены восходящие пути спинного мозга. У таких людей движения при ходьбе некоординированные, так как нарушена проводящая часть двигательного анализатора. Значение   двигательного   анализатора Двигательный анализатор имеет исключительно важное значение для выполнения и разучивания движений. Он контролирует правильность и точность движений. Например, при сгибании руки в локтевом суставе сокращается двуглавая мышца плеча и растягивается трехглавая.   Возбуждение,   возникшее   в  рецепторах   этих мышц, сигнализирует о том, что одна мышца сокращена,  а  другая растянута. Рецепторы трущихся поверхностей локтевого сустава и растянутых сухожилий информируют мозг об амплитуде и быстроте сгибания. Эта сигнализация не только дает возможность человеку ощутить данное движение, но и позволяет коре головного мозга проконтролировать точность и правильность его выполнения. Возбуждение от рецепторов двигательного анализатора поступает в чувствительно-двигательную зону коры. Оттуда идет поток импульсов к работающим мышцам, обеспечивающий своевременное исправление выполняемых движений. Двигательный  анализатор  играет  ведущую  роль  при разучивании новых движений. Любые движения, которые  приобретает  человек  в  течение  жизни,  являются сложными условными двигательными рефлексами. Умение писать пером и играть на рояле, делать battement tendu из первой позиции и выполнять сложнейшие комбинации хореографических движений появляется в результате образования этих рефлексов.  Они вырабатываются с помощью двигательного анализатора. В двигательной деятельности человека участвуют и подкорковые центры, Они регулируют мышечный тонус, уточняют координацию движений во время бега, ходьбы и танца, согласуют деятельность внутренних органов с двигательными рефлексами.

172. Восприятие вкуса и запахов. Теории и механизмы.

Обоняние и вкус относятся к висцеральным чувствам, поскольку они в значительной степени связаны с функцией пищеварения (например, ароматы пищи обычно сочетаются с её вкусом) и дыхания. Воспринимающие структуры органов обоняния и вкуса - хеморецепторы, они возбуждаются молекулами вкусовых веществ и одорантами.

Рецепторы обонятельной сенсорной системы расположены в области верхних носовых ходов. Обонятельный эпителий находится в стороне от главного дыхательного пути. На поверхности каждой обонятельной клетки имеется сферическое утолщение - обонятельная булава, из которой выступает по 6-12 тончайших (0,3 мкм) волосков длиной до 10 мкм. Обонятельные волоски погружены в жидкую среду, вырабатываемую боуменовыми железами. Считается, что наличие волосков в десятки раз увеличивает площадь контакта рецептора с молекулами пахучих веществ. Не исключена и активная, двигательная f волосков, увеличивающая надежность захвата молекул пахучего вещества и контакта с ними. Булава является важным цитохимическим центром обонятельной клетки; есть основание полагать, что в ней генерируется рецепторный потенциал.

Молекулы пахучего вещества вступают в контакт со слизистой оболочкой носовых ходов, взаимодействуют соспециализированными белками, встроенными в мембрану рецептора. В результате следующей за этим сложной и пока еще недостаточно изученной цепи реакций в рецепторе генерируется рецепторный потенциал, а затем и импульсное возбуждение, передающееся по волокнам обонятельного нерва в обонятельную луковицу - первичный нервный центр обонятельного. Адаптация в обонятельном анализаторе происходит сравнительно медленно (десятки секунд или минуты) и зависит от скорости потока воздуха над обонятельным эпителием и концентрации пахучего вещества. Каждый обонятельный рецептор отвечает не на один, а на многие пахучие вещества, отдавая «предпочтение» некоторым из них. При разных запахах меняется и пространственная мозаика возбужденных и заторможенных участков луковицы.

Особенность обонятельного анализатора состоит, в частности, в том, что его афферентные волокна не переключаются в таламусе и не переходят на противоположную сторону большого мозга.

Выходящий из луковицы обонятельный тракт состоит из нескольких пучков, которые направляются в разные отделы переднего мозга: переднее обонятельное ядро, обонятельный бугорок, препириформную кору, периамигдалярную кору и часть ядер миндалевидного комплекса. Большинство областей проекции обонятельного тракта можно рассматривать как ассоциативные центры, обеспечивающие связь обонятельной системы с другими сенсорными системами и организацию на этой основе ряда сложных форм поведения - пищевой, оборонительной, половой и т.д.

Чувствительность обонятельного анализатора человека чрезвычайно велика: один обонятельный рецептор может быть возбужден одной молекулой пахучего вещества, а возбуждение небольшого числа рецепторов приводит к возникновению ощущения. В то же время изменение интенсивности действия вещества (порог различения) оценивается людьми довольно грубо (наименьшее воспринимаемое различие в силе запаха составляет 30-60% от его исходной концентрации). У собак эти показатели в 3-6 раз меньше.

Для практических целей разработана классификация запахов. При этом обнаруживается, что вещества сходного химического строения оказываются в разных запаховых классах, а вещества одного и того же запахового класса значительно различаются по своей структуре. Выделяют следующие основные запахи: камфарный, цветочный, мускусный, мятный, эфирный, едкий, гнилостный. В естественных условиях, как правило, встречаются смешанные запахи, в которых преобладают те или иные составляющие. Разграничение их по качеству возможно только до некоторой степени, и лишь в усовиях очень высоких концентраций некоторых веществ. Сходство и различие запахов связывают со структурой и (или) колебательными свойствами веществ, т.е. с их стереохимией – пространственным соответствием конфигурации пахучих веществ форме рецепторных участков на поверхностной мембране обонятельных ворсинок. Для восприятия едкого и гнилостного запахов считают важным не форму молекул, а плотность заряда на них.

Вкус, так же как и обоняние, основан на хеморецепции. Вкусовые рецепторы несут информацию о. характере и концентрации веществ, поступающих в рот. Их возбуждение запускает сложную цепь реакций разных отделов мозга, приводящих к различной работе органов пищеварения или удалению вредных для организма веществ, попавших в рот с пищей.

Рецепторы вкуса - вкусовые почки - расположены на языке, задней стенке глотки, мягком небе, миндалинах и надгортаннике. Больше всего их на кончике языка, его краях и задней части. Каждая из примерно 10 000 вкусовых почек человека состоит из нескольких (2-6) рецепторных клеток и, кроме того, из опорных клеток. Вкусовая почка имеет колбовидную форму, длина и ширина ее у человека около 70 мкм, она не достигает поверхности слизистой оболочки языка и соединена с полостью рта через вкусовую пору.

Вкусовые клетки - наиболее короткоживущие эпителиальные клетки организма; в среднем через каждые 250 ч каждая клетка сменяется молодой, движущейся к центру вкусовой почки от ее периферии. Каждая из рецепторных вкусовых клеток длиной 10-20 мкм, шири ной 3-4 мкм имеет на конце, обращенном в просвет поры, 30-40 тончайших микроворсинок-0,1-0,2 мкм, длиной 1-2 мкм.

Суммарный потенциал рецепторных клеток изменяется при раздражении языка разными веществами (сахаром, солью, кислотой). Этот потенциал развивается довольно медленно: максимум его достигается к 10-15 с после воздействия, хотя электрическая активность в волокнах вкусового нерва начинается значительно раньше. Проводниками всех видов вкусовой чувствительности служат барабанная струна и языкоглоточный нерв, ядра которых в продолговатом мозге содержат первые нейроны вкусового анализатора. Регистрация импульсации в отдельных волокнах данных нейронов показала, что многие из волокон отличаются определенной специфичностью, так как отвечают лишь на соль, кислоту и хинин. Есть волокна, чувствительные к сахарам. Однако наиболее убедительной сейчас считается гипотеза, согласно которой информация о 4 основных вкусовых ощущениях: горьком, сладком, кислом и соленом - кодируется не импульсацией в одиночных волокнах, а разным распределением частоты разрядов в большой группе волокон, одновременно, но по-разному возбуждаемых вкусовым веществом.

Вкусовые афферентные сигналы поступают в ядро одиночного пучка ствола мозга. От ядра одиночного пучка аксоны вторых нейронов восходят в составе медиальной петли до дугообразного ядра таламуса, где расположены третьи нейроны, дающие аксоны до корковых центров вкуса.

Абсолютные пороги вкусовой чувствительности во многом зависят от состояния организма (они изменяются при голодании, беременности и т.д.). При измерении абсолютной вкусовой чувствительности возможны две ее оценки: возникновение неопределенного вкусового ощущения (отличающегося от вкуса дистиллированной воды) и возникновение определенного вкусового ощущения. Порог возникновения второго ощущения выше. Пороги различения минимальны в диапазоне средних концентраций веществ, но при переходе к большим концентрациям резко повышаются.

При действии вкусовых веществ наблюдается адаптация (снижение интенсивности вкусового ощущения). Продолжительность адаптации пропорциональна концентрации раствора. Адаптация к сладкому и соленому развивается быстрее, чем к горькому и кислому. Обнаружена и перекрестная адаптация, т.е. изменение чувствительности к одному веществу при действии другого.

Классификация вкусовых ощущений. Выделяют четыре основных вкуса: сладкое, кислое, соленое и горькое. Кончик языка наиболее чувствителен к сладкому, средняя часть – к кислому, корень – к горькому, край – к соленому и кислому. Обычно вкусовые ощущения смешанные, потому что стимулы отличаются сложным составом и объединяют несколько вкусовых качеств. Сходным вкусом могут обладать резко различные по химической структуре вещества, разного вкуса могут быть и оптические изомеры одного химического вещества.

Теории вкусовой рецепции. Раскрытие механизмов, лежащих в основе вкусовой рецепции, является весьма важным для создания теории вкуса. Прежде всего заслуживает упоминания гипотеза П.П. Лазарева. Он полагал, что под влиянием адекватных вкусовых раздражений происходит распад гипотетических высокочувствительных веществ белковой природы, содержащихся во вкусовых луковицах, что приводит к специализированному раздражению нервных окончаний ионизированными продуктами распада. Каждая луковица способна реагировать на все вкусовые вещества, но в значительно меньшей степени, чем на вещество одного вкусового качества

Ферментативная теория вкуса Баради и Бурна объясняет возникновение специфического вкусового ощущения активизацией определенных ферментов в клетках вкусовой луковицы. Однако эта теория в дальнейшем подверглась критике.

Большое значение для понимания механизмов вкуса имели гипотезы, связывающие вкусовую рецепцию с мембранными процессами Согласно этой гипотезе, начальным этапом вкусовой рецепции является адсорбция молекулы вещества на специализированных участках белковой цепи, связанной с мембраной рецептора.   Представление о наличии на апикальной поверхности мембраны вкусовой клетки специализированных активных центров, избирательно адсорбирующих вещества с различными вкусовыми качествами,  доказано электрофизиологическими исследованиями Бейдлера. Кроме того, из гомогенатов эпителия языка были выделены белковые фракции образующие комплексные соединения одни с различными сахарами, другие – с горькими веществами.

Вместе с тем теория Бейдлера не может объяснить некоторые явления, связанные с вкусовой рецепцией, в частности, явление адаптации. Она отражает лишь явления,  происходящие в рецепторе на первом этапе действия вкусового раздражителя. В дальнейшем включаются нервные механизмы интеграции, общие для многих сенсорных систем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]