
- •21. Физиология клеточных мембран. Механизмы трансмембранного транспорта.
- •23. Возбудимость. Раздражимость. Классификация раздражителей.
- •24. Физиологические свойства возбудимых тканей. Потенциал действия.
- •25. Классификация нервных волокон.
- •26. Механизм проведение возбуждения по нервным волокнам. Сальтаторное проведение.
- •27. Законы проведения возбуждения по нервным проводникам. Закон изолированного проведения возбуждения в нервных стволах.
- •28. Изменение возбудимости в процессе возбуждения.
- •29. Полярный закон раздражения. Физиологический электротон.
- •34. Тетанические сокращения мышц при произвольных движениях. Значение асинхронности возбуждения двигательных единиц. Зависимость характера и высоты тетанических сокращений от частоты раздражения.
- •Вопрос 36
- •40. Величина давления в различных отделах сосудистой системы. Причины неравномерности снижения.
- •62. Пульс, его происхождение. Сфигмограмма, ее компоненты. Венный пульс
- •1. Гуморальная регуляция кровоснабжения Почек
- •2. Нервная регуляция кровоснабжения Почек
- •3. Миогенная регуляция кровоснабжения Почек
- •Нервная регуляция
- •Гуморальная регуляция
- •Миогенная регуляция кровоснабжения Головного мозга
- •Метаболическая регуляция кровоснабжения Головного мозга
- •Нейpогенная регуляция кровоснабжения Головного мозга
- •94. Дыхательные мышцы. Главные и дополнительные. Влияние их сокращения на объем грудной полости.
- •96. Давление в полости легких при вдохе и выдохе. Причины изменений и значение.
- •97. Давление в плевральной полости. Изменения при спокойном и глубоком дыхании. Транспульмональное давление.
- •98. Характеристика легочных объемов. Методы измерения. Мертвое пространство дыхательной системы, его значение.
- •99. Альвеолярный воздух, его состав, методика определения. Причины и значение относительного постоянства состава.
- •100. Вентиляционно-перфузионное отношение. Особенности вентиляции и перфузии в различных отделах легких.
- •101. Газообмен в легких. Диффузионная способность легких. Значение физически растворенных о2 и со2 крови.
- •102. Кривая диссоциации оксигемоглобина. Значение крутой и отлогой ее частей. Факторы, влияющие на ход кривой.
- •103. Перенос со2 кровью. Образование бикарбонатов и карбаминогемоглобина. Значение карбоангидразы.
- •104. Газообмен между кровью и тканями.
- •105. Дыхательный центр (бульбо-понтинный дыхательный механизм). Современные представления о его структуре и связях.
- •106. Основные скопления дыхательных нейронов продолговатого мозга. Их связи и значение.
- •107. Рецепторы легких. Их значение в регуляции дыхания.
- •108. Значение центральных и периферических хеморецепторов в регуляции дыхания.
- •110. Регуляция дыхания при мышечной работе
- •111. Состав слюны и ее значение в пищеварении.
- •112. Регуляция деятельности слюнных желез. Рефлекторная дуга безусловного слюноотделительного рефлекса.
- •113. Состав желудочного сока и его значение в пищеварении.
- •114. Фазы регуляции секреции желудочного сока. Их механизмы.
- •115. Состав панкреатического сока. Его значение в пищеварении.
- •116. Регуляция секреции поджелудочного сока.
- •117. Состав желчи и ее значение в пищеварении.
- •118. Регуляция образования желчи и ее выделения в 12-перстную кишку.
- •119. Переваривание белков в пищеварительном тракте.
- •120. Переваривание жиров в пищеварительном тракте.
- •121. Переваривание углеводов в пищеварительном тракте.
- •123. Всасывание продуктов переваривания белков, жиров и углеводов из кишечника и их дальнейший транспорт в организме.
- •124. Мембранное (пристеночное) пищеварение. Структурные основы, механизмы и значение.
- •125. Виды движений кишечника, их значение. Регуляция.
- •126. Гормоны пищеварительного тракта и их значение.
- •127. Определение обмена энергии методом Дугласа и Холдена. Дыхательный коэффициент. Калорический эквивалент кислорода.
- •Углеводы
- •Витамины
- •130. Способы теплоотдачи, ее регуляция.
- •131. Механизм поддержания постоянства температуры организма при воздействии низких температур – высокие широты.
- •132. Механизм поддержания постоянства температуры организма при воздействии высоких температур – низкие широты.
- •134. Содержание воды в организме. Водный баланс. Потребность в воде в зависимости от характера питания и функции почек. Особенности состава межклеточной (интерстициальной) и внутриклеточной жидкостей.
- •135. Образование первичной мочи. Клубочковая фильтрация и факторы, ее определяющие. Состав и количество первичной мочи. Определение величины клубочковой фильтрации у человека.
- •Определение скорости клубочковой фильтрации(скф)
- •136. Основные процессы, происходящие в проксимальных извитых канальцах почки. Их значение.
- •137. Реабсорбция воды в почках, ее виды. Регуляция реабсорбции воды.
- •1. Проксимальная реабсорбция
- •2. Дистальная реабсорбция
- •139. Основные процессы, происходящие в дистальных извитых канальцах почки. Их значение
- •142. Гуморальная регуляция функций. Факторы гуморальной регуляции. Виды биологически активных веществ.
- •143. Эндокринная система человека. Гормоны, их классификация, функции и механизмы действия.
- •144. Гормоны гипоталамуса: физиологическая роль, регуляция секреции. Гипоталамо-гипофизарная система.
- •145. Эффекторные и гландотропные гормоны аденогипофиза. Физиологическая роль, регуляция секреции.
- •146. Тиреоидные гормоны. Физиологическая роль, регуляция секреции
- •147. Гормональная регуляция концентрации кальция и фосфора в крови
- •148. Глюкокортикоиды, их значение. Регуляция секреции.
- •149. Гипоталамо-гипофизарная система и стресс.
- •151. Гормоны мозгового вещества надпочечников. Их значение. Регуляция секреции. Адренорецепторы.
- •153. Гормональная регуляция содержания глюкозы в крови.
- •154. Структурно-функциональная схема анализатора
- •155. Классификация рецепторов. Рецепторный (генераторный) потенциал. Его значение и свойства.
- •156. Специфичность органов чувств. Принцип меченой линии. Адекватные и неадекватные раздражители.
- •Адекватные и неадекватные раздражители
- •156. Кодирование в сенсорных системах
- •158. Общие свойства сенсорных систем.
- •159. Кожый анализатор. Соматосенсорные системы
- •160. Проведение нервных импульсов от тактильных рецепторов кожи в кору больших полушарий.
- •161. Вестибулярный анализатор. Рецепторы, проводящие пути, вестибулярные реакции.
- •162. Рефлекторные реакции на линейные и угловые ускорения. Значение в поддержании равновесия. Изменения в организме при перегрузках вестибулярного аппарата.
- •163. Орган слуха. Теория восприятия силы и частоты звуковых колебаний.
- •164. Рефракция глаза и ее аномалии. Способы коррекции.
- •165. Зрачковые рефлексы, их механизмы.
- •166. Аккомодация глаза, ее значение и механизмы.
- •167. Рецепторы сетчатки. Свойства палочек и колбочек. Их значение.
- •168. Функции колбочек сетчатки. Их локализация и свойства. Трехкомпонентная теория цветного зрения.
- •169. Психофизиология зрения.
- •170. Интероцептивный анализатор
- •171. Двигательный анализатор.
- •173. Физиологическое значение боли. Определение. Классификация.
- •176. Методы исследования цнс.
- •185. Принцип доминанты. Механизмы. Значение в рефлекторной деятельности.
- •187. Влияние структур ствола головного мозга на тонус скелетных мышц. Децеребрационная ригидность.
- •188. Статические и статокинетические рефлексы. Их механизмы и значение.
- •191. Функции зрительных бугров промежуточного мозга. Классификация ядер, их значение.
- •192. Значение гипоталамуса в регуляции вегетативных функций.
- •193. Моторные проекционные зоны коры больших полушарий. Пирамидная система, ее значение.
- •195. Проекционные зоны коры больших полушарий. Концепции и теории локализации функций в больших полушариях.
- •197. Значение условных рефлексов для организма. Условия образования временных связей.
- •200. Физиологические механизмы сна. Фазы сна. Теории сна.
- •203. Мотивации, их значение в поведении. Роль гипоталамуса в возникновении мотиваций. Опыты с самораздражением.
- •204. Функции лимбической системы мозга. Реакции удовольствия и избегания.
- •205. Эмоции, определение, классификация. Структуры мозга, участвующие в формировании эмоций. Теории формирования эмоций.
- •206. Память, ее основные виды. Основные теории о механизмах памят
- •Объем крови, Относительная плотность, вязкость и величина гематокрита у взрослых и новорожденных. Причины различий.
- •Отличие соэ у детей раннего возраста и взрослых. Причины отличия.
- •3. Отличие соэ у детей раннего возраста и взрослых.
- •4. Количество лейкоцитов в крови детей раннего возраста и взрослых. Изменения соотношения нейтрофилов и лимфоцитов после рождения.
- •6. Становление в онтогенезе групповых свойств крови.
- •7. Распределение воды в организме ребенка. Объемы внутри- и внеклеточной жидкостей. Возрастные изменения потребности в воде.
- •8. Особенности величин мембранных потенциалов, потенциалов действия и скорости их проведения в раннем постнатальном онтогенезе. Причины отличий от взрослых.
- •9. Особенности функций вегетативной нервной системы у детей разного возраста.
- •10. Особенности переваривания пищи в желудке грудных детей.
- •11. Особенности переваривания пищи в кишечнике грудных детей.
- •12. Особенности двигательной активности желудка и кишечника у детей.
- •13. Сосание, его фазы. Рефлекторная дуга сосательного рефлекса.
- •14. Лактотрофное и смешанное питание у грудных детей. Состав молока.
- •15. Особенности процессов иррадиации возбуждения в центральной нервной системе у детей раннего возраста, их причины.
- •Основной обмен энергии на единицу массы и поверхности тела у взрослых и детей раннего возраста.
- •Особенности кровообращения плода.
- •21. Механическая работа правого и левого желудочков сердца у новорожденных детей. Отличия от взрослых.
- •22. Особенности электрокардиограммы у новорожденных. Изменения экг с возрастом.
- •23. Частота сердечных сокращений, систолический и минутный объем крови у новорожденных и взрослых. Причины различий.
- •25. Скорость распространения пульсовой волны у взрослых и детей, причины различий.
- •28. Развитие выработки сурфактанта у плода. Регуляция секреции.
- •29. Особенности растяжимости легких и грудной клетки новорожденного ребенка. Влияние этих особенностей на механику дыхания.
- •30. Особенности показателей внешнего дыхания детей. Методы измерения.
- •31. Особенности состава альвеолярного воздуха у детей. Значение этих особенностей.
- •32. Кислородная емкость крови взрослого человека и у новорожденного. Причины различий.
- •33. Особенности кривой диссоциации оксигемоглобина плода, их причины и значение.
- •34. Особенности терморегуляции у маленьких детей.
- •36. Особенности реабсорбции в различных отделах нефрона у детей раннего возраста.
- •37. Особенности диуреза и состава дефинитивной мочи у грудных детей.
- •39. Особенности секреции гормонов коркового вещества надпочечников и их значения в пре- и постнатальном онтогенезе.
- •40. Значение вилочковой железы в раннем детском возрасте.
- •41. Нарушения роста и развития детей, обусловленные патологией щитовидной железы.
- •42. Особенности функции аденогипофиза у плода и ребенка.
- •43. Роль эндокринной системы в регуляции обмена кальция у детей.
- •44. Особенности регуляции секреции и значения антидиуретического гормона у грудных детей.
- •Двигательные рефлексы новорожденных.
- •47. Первые условные рефлексы у новорожденных детей, их особенности.
- •13.2. Механизм замыкания условного рефлекса
- •13.3. Условно-рефлекторная деятельность в онтогенезе
- •13.4. Виды и механизмы памяти
- •48. Развитие второй сигнальной системы у детей.
- •49. Особенности ээг у детей раннего возраста.
- •50. Особенности рефракции глаза у детей первого года жизни. Ее изменения с возрастом.
- •51. Развитие звуковой чувствительности у ребенка.
127. Определение обмена энергии методом Дугласа и Холдена. Дыхательный коэффициент. Калорический эквивалент кислорода.
Основной обмен — это энергозатраты организма в условиях физиологического покоя, т. е. в положении лежа, натощак (10—12 часов после приема пищи), при температурном комфорте. То есть это минимальные затраты организма, которые нужны для поддержания его жизнедеятельности.
Основной обмен связан с функционированием жизненно важных органов. Относительный вклад (в \%) различных органов в обеспечение основного обмена
Органы |
Печень |
Мытптгы |
Мозг |
Сердце |
Почки |
Другие органы |
\% |
26 |
26 |
18 |
9 |
7 |
14 |
Условия определения основного обмена:
а) утром сразу после сна (учитывается также необходимость бодрствования ис1тытуемого);
б) в покое, в лежачем состоянии (увеличение обмена веществ происходит при усилении работы скелетных мышц);
404
в) натощак, т. к. во время переваривания пищи обмен усиливается (специфическое динамическое действие пищи);
г) в условиях температурного комфорта при температуре окружающей среды около 18 °С (это необходимо для исключения усиления обмена веществ, направленного на терморегуляцию);
д) в условиях эмоционального покоя (для исключения соответствующего изменения обмена веществ за счет действия гормонов и других регуляторов, связанных с эмоциями).
Методы определения основного обмена
Прямая калориметрия. Метод основан на измерении количества тепла, выделенного организмом в окружающую среду, например, за один час или за сутки.
Для изучения подобным способом теплопродукции человека используют оценку нагревания воды, циркулирующей в стенах, потолке и полу специальной камеры. О количестве выделенной энергии судят по величине нагрева воды.
Непрямая калориметрия (метод Дугласа—Холдена). Это оценка энерготрат, основанная на расчете данных количества потребленного кислорода и выделенного углекислого газа, расчета дыхательного коэффициента и соответствующего калорического коэффициента кислорода.
Суть метода состоит в следующем. Определяют объемы потребленного СО и выделенного СОза определенное время. Их отношение (называемое дыхательным коэффициентом отражает преимущественный характер окисляемых веществ (белков, жиров, углеводов в разных соотношениях). Дыхательный коэффициент таким образом свидетельствует о том, как эффективно был использован потребленный О2 (различные окислявшиеся вещества дают разное количество энергии; а характер этих веществ показывает дахательный коэффициент). Зная «ценность» потребленного кислорода («калорический эквивалент кислорода») и количество потребленного О2, получаем энергопродукцию за время опыта. Перерасчет результата на сутки дает величину суточной энергопродукции.
ДЫХАТЕЛЬНЫЙ КОЭФФИЦИЕНТ
отношение объёма СО2, выделяемого из организма при дыхании, к объёму поглощаемого за то же время О2; характеризует особенности газообмена и обмена веществ живых организмов. Д. к. зависит от химич. природы дыхат. субстрата, содержания СО2 и О2 в атмосфере и нек-рых др. факторов, характеризуя таким образом специфику и условия дыхания. При окислении углеводов в организме хищных животных (и свободном доступе О2) Д. к. равен 1, жиров — 0,7, белков — 0,8. У растительноядных животных он составляет ок. 0,7. У человека в норме в состоянии покоя Д. к. равен 0,85, при умеренной работе — ок. 1. При интенсивной работе и гипервентиляции лёгких Д. к. может возрастать до 2. При длит, работе, а также при голодании Д. к. постепенно снижается (примерно до 0,7). У растений Д. к. равен 1 (напр., в листьях, богатых углеводами); больше 1— при неполном окислении в условиях анаэробиоза (в семенах с твёрдой оболочкой, напр. льна) или при использовании субстрата более богатого О2, чем углеводы,— орга-нич. к-т (напр., в яблоках после зимней лёжки) и др.; меньше 1 — при окислении субстрата с меньшим относит, содержанием кислорода, чем в углеводах,— липидов или белков (напр., в прорастающих семенах пшеницы, бобовых).
Калорический эквивалент кислорода — количество энергии, освобождающееся при потреблении организмом 1 л кислорода; величина К. э. к. зависит от относительного содержания в пище жиров, белков и углеводов; используется при непрямой калориметрии.
128. Основной обмен энергии, его значение. Факторы, от которых зависит его величина. Основной обмен (ОО) - суточные энергозатраты организма в стандартных условиях:
- Утром (потому, что являются суточные колебания уровня энергозатрат - он минимален ночью в 3-4 часа и максимальный вечером в 17-18 часов);
- В условиях физического и эмоционального покоя (мышечная работа сопровождается увеличением энергозатрат, так как на сокращение мышц необходимо тратить значительное количество энергии; в условиях эмоционального напряжения активируется симпатический отдел вегетативной нервной системы увеличивается количество катехоламинов и тироксина расщепления окисления и фосфорилирования увеличения энергозатрат)
- Лежа (чтобы не тратилась лишняя энергия на сокращение мышц на поддержание антигравитационной позы);
- При температуре комфорта (при этом поддержание постоянства температуры тела не требует напряжения процессов теплоотдачи и теплопродукции, то на эти процессы не тратится энергия);
- Натощак (через 10-12 часов после приема пищи, чтобы не проявлялась специфически динамическое действие жратвы).
Специфически-динамическое действие пищи - увеличение энергозатрат, что связано с приемом пищи. После приема углеводной и жировой пищи, специфически динамическое действие пищи составляет 10-15%, а белковой - 30%. Увеличение энергозатрат связано с активацией гладких мышц ЖКТ и выделения секретов (пищеварительных секретов), с процессами всасывания - все эти процессы протекают с использованием энергии АТФ. Аминокисноты после всасывания в печени дезаминуються и пераминуються, что также требует энергозатрат, поэтому специфически-динамическое действие белковой пищи выше, чем углеводородного и жировой.
Соответственно, определяя ОО создают условия, при которых энергия окисления питательных веществ витрачаеть на поддержание нормальной жизнедеятельности организма в состоянии бодрствования, но при условии, что энергозатраты организма минимальны. Энергия окисления питательных веществ при этом расходуется так:
- 50% ее превращается в первичное тепло и выделяется из организма, 50% идет на синтез АТФ;
Расходы АТФ следующие:
процессы биосинтеза - 23%;
сокращения мышц (поддержание тонуса скелетных мышц, сокращения миокарда и дыхательных мышц) - 15%;
работа механизмов активного транспорта веществ - 12%.
Факторы от которых зависит величина ОО:
Пол.
Масса тела.
Рост.
Возраст.
Особенности процессов обмена веществ в организме, а именно процессов аэробного окислительного фосфорилирования, степень сопряжения окисления и фосфорилирования в дыхательной цепи. Это в свою очередь, определяется влиянием на процессы окислительного фосфорилирования регуляторных механизмов - катехоламинов и тироксина.
Оценивают величину ОО, сравнивая ее со стандартным обменом - надлежащая (нормальная) величина для данного человека. Точнее величину стандартного обмена определяют по таблицам Хариса и Бенедикта. При этом учитывают пол, массу, рост и возраст. Допустимые отклонения ОО от должной величины на 15%. Если ОО выше или ниже должной величины более чем на 15%, это свидетельствует о нарушении нормального протекания в организме окислительного фосфорилирования, т.е. нарушение механизмов регуляции этих процессов.
129. Энергетический баланс организма. Регуляция. Калорическая ценность питательных веществ. Требования к соотношению питательных веществ в пищевых рационах. Энергетический обмен присущ каждому живому организму. В вашем теле идет постоянный и непрерывный обмен веществ и энергии. При этом богатые питательными веществами продукты усваиваются и химически преобразуются, а конечные продукты их утилизации (низкоэнергетические) выделяются из организма. Высвобождающаяся энергия используется для поддержания жизнедеятельности клеток организма и для обеспечения его работы (сокращение мышц, работа сердца, функционирование внутренних органов).
Единицей измерения процесса энергетического обмена является калория. Одна калория равняется такому количеству энергии, которое необходимо для нагревания на 1 °С одного миллилитра воды. Это очень маленькая величина. Поэтому энергобаланс организма измеряют в «больших» калориях - килокалориях (1 килокалория равна 1000 калорий и обозначается ккал). В единицах Международной системы СИ для определения количества тепловой энергии используется джоуль (Дж). 1 кал =4,19 Дж, 1 ккал -4,19 кДж. Сколько энергии необходимо человеку для нормальной жизнедеятельности в течение суток? Ответ на данный вопрос поможет определиться в причинах ожирения.
Необходимо знать, какие энергозатраты наиболее эффективны для сжигания лишнего жира и как эти знания можно использовать для успешного похудения. Наиболее частая величина, рассчитанная для абстрактного человека, имеющего склонность к полноте или избыточный вес, равняется 2200 ккал. Более точную цифру можно получить при умножении вашего нормального веса в кг на 33 ккал (для мужчин) или на 30 ккал (для женщин). Это упрощенный вариант, который широко используется при расчете рационов питания.
Основной обмен. Основной обмен - это минимальная величина энергии, необходимая для поддержания жизни организма, находящегося в состоянии покоя (утром, лежа, натощак, в условиях температурного комфорта).
Многочисленные исследования основного обмена позволили установить, что для мужчин норма основного обмена составляет 1 ккал на 1 кг массы тела в час, для женщин (имеющих меньшую массу мышечной ткани) - 0,9 ккал на 1 кг массы тела в 1 час. Произведем примерный расчет: О = М х 24 х П
где О - суточный основной обмен веществ в ккал; 24 - количество часов в сутки; П - интенсивность часового основного обмена веществ в ккал на килограмм; М - нормальная масса тела в килограммах. Например: у мужчины с нормальной массой тела 70 кг О = 70 х 24 х 1 =70х24= 1680 ккал в сутки.
Таким образом, приблизительная величина нормального суточного основного обмена для мужчины с нормальной массой тела 70 кг равна 1700 ккал. Аналогичный расчет этого показателя для женщины с нормальной массой 70 кг составляет 1500 ккал. Подобное различие обусловлено, в основном, тем, что у женщин мышечная масса меньше.
Питательные вещества, содержащиеся в разных кормах, необходимы для поддержания жизни животных.
Существует 6 главных групп питательных веществ, 3 из которых обеспечивают организм энергией - это белки, жиры и углеводы. Другие питательные вещества - витамины, минеральные вещества и вода - являются не энергетическими веществами.
В организме белки, жиры и углеводы расщепляются с образованием энергии. Количество энергии, высвобождающейся при этом из 1г вещества, называется калорической ценностью. Эта величина измеряется в килокалориях. Протеин и углеводы образуют при расщеплении примерно 4 ккал/г вещества, а жиры - 9 ккал/г.
Однако, все эти питательные вещества выполняют не только энергетическую, но также и пластическую функцию, т.е. используются для построения структур организма и синтеза секретов.
Белки
Белки представляют собой вещества, состоящие из аминокислот. У животных большая часть белков используется для пластического обмена, т.е. для построения и обновления биологических структур (мышц, ферментов, белков крови и т.д.).
Количество протеина, требуемого животному, зависит от вида и возраста животного и от качества протеина. В состав пищи собак обязательно должны входить белки, содержащие так называемые незаменимые аминокислоты. Все животные нуждаются во всех 23 аминокислотах, но многие аминокислоты могут синтезироваться в организме животных. Собакам требуется 10 незаменимых аминокислот, которые обязательно должны поступать с кормом.
Незаменимыми аминокислотами для собак являются: аргинин, гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин.
Качество протеина оценивается по его биологической ценности. Животные белки являются более полноценными по сравнению с растительными, т.к. содержат много незаменимых аминокислот. Однако, комбинируя в правильной пропорции растительные и животные протеины, можно значительно повысить их биологическую полноценность. Например, соевая мука является самым качественным источником растительного протеина.
Наиболее отчётливым признаком дефицита белка является ухудшение роста у молодых животных, снижение веса и продуктивности у взрослых животных. Рост шерсти ухудшается, линька затягивается, появляются участки выпадения волос с грубой, шершавой кожей.
Однако, надо помнить, что излишнее потребление собаками белков в составе корма, может способствовать развитию у них мочекаменной и почечных заболеваний. Поэтому существует оптимальный уровень протеина в составе кормов, зависящий от возраста, физической активности и других физиологических особенностей животных.