- •С.Г. Козлов, м.А. Куликов основыхимической технологии
- •240301.65 «Химическая технология неорганических веществ»
- •Введение
- •1. Общие понятия о химическом производстве
- •1.1. Химическая технология как наука
- •1.2. Связь химической технологии с другими науками
- •1.3. Развитие химической технологии
- •1.4. Классификация химической технологии
- •2. Компоненты химического производства
- •2.1. Сырье в химическом производстве
- •2.1.1. Основные определения
- •2.1.2. Классификация сырья
- •2.1.3. Ресурсы и рациональное использование сырья
- •2.1.4. Подготовка минерального сырья
- •2.1.5. Очистка и разделение газовых смесей
- •2.2. Энергия в химической технологии
- •2.2.1. Использование энергии в химической технологии
- •2.2.2. Источники энергии. Классификация источников энергии
- •2.2.3. Рациональное использование энергии
- •2.2.4.Новые виды энергии в химической технологии
- •2.3. Вода в химической промышленности
- •2.3.1. Основные показатели качества воды
- •2.3.2. Промышленная водоподготовка
- •2.4. Воздух в химической технологии
- •3. Критерии оценки эффективности химического производства
- •3.1. Технические показатели
- •3.2. Экономические показатели
- •3.3. Эксплуатационные показатели
- •3.4. Социальные показатели
- •3.5. Материальный и энергетический баланс химического производства
- •4. Системный подход в изучении химико-технологического процесса
- •4.1. Общие понятия и определения
- •4.2. Химико-технологическая система как объект моделирования
- •4.3. Операторы
- •4.4. Матричное представление моделей
- •4.5. Подсистемы хтс
- •4.6. Связи
- •4.7. Классификация технологических схем
- •4.8. Системный подход к разработке технологии производства
- •4.8.1. Методологические принципы
- •4.8.2. Выбор технологии производства продукции
- •4.9. Оптимизация производства
- •4.9.1. Декомпозиция химико-технологических систем
- •4.9.2. Оптимизация химико-технологических систем
- •5. Общие закономерности химических процессов
- •5.1. Понятие о химическом процессе
- •5.2. Классификация химических реакций
- •5.3. Виды химических реакций
- •5.4. Характеристика гомогенных процессов
- •5.5. Основные закономерности гомогенных процессов
- •5.6. Интенсификация гомогенных процессов
- •5.7. Гетерогенные некаталитические процессы
- •5.8. Интенсификация процессов, основанных на необратимых реакциях
- •5.9. Интенсификация процессов, основанных на обратимых реакциях
- •6. Гетерогенный катализ
- •6.1. Общие положения катализа
- •6.2. Процессы адсорбции и хемосорбции в гетерогенном катализе
- •6.2.1. Теория адсорбции Лэнгмюра
- •6.2.2. Нелэнгмюровская адсорбция
- •6.3. Механизм гетерогенных каталитических процессов
- •6.3.1. Внешняя диффузия
- •6.3.2. Внутренняя диффузия
- •6.4. Основные требования к гетерогенным катализаторам
- •6.5. Основные структурные параметры гетерогенных катализаторов
- •6.6. Технологические свойства гетерогенных катализаторов
- •6.7. Классификация гетерогенных катализаторов
- •6.8. Состав катализаторов
- •6.9. Приготовление катализаторов
- •7. Гомогенный катализ
- •7.1. Кислотный (основной) катализ
- •7.1.1. Специфический кислотный катализ
- •7.1.2. Специфический основной катализ
- •7.1.3. Общий кислотный катализ
- •7.1.4. Общий основной катализ
- •7.1.5. Электрофильный катализ
- •7.1.6. Кинетика реакций кислотно-основного катализа
- •7.2. Металлокомплексный катализ
- •7.3. Ферментативный катализ
- •8. Химические реакторы
- •8.1. Принципы классификации химических реакторов
- •8.2. Принципы проектирования химических реакторов
- •8.2.1. Моделирование химических реакторов и протекающих в них процессов
- •8.2.2. Структура математической модели химического реактора
- •8.2.3. Уравнение материального баланса для элементарного объема проточного реактора
- •8.3. Химические реакторы с идеальной структурой потока в изотермическом режиме
- •8.3.1. Реактор идеального смешения (рис)
- •8.3.2. Реактор идеального вытеснения (рив)
- •8.3.3. Примеры аналитического решения математической модели
- •8.4. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения
- •8.5. Конструкции реакторов
- •8.5.1. Требования к реакторным конструкциям
- •8.5.2. Типизация реакторов
- •8.5.3. Примеры конструкций реакторов
- •9. Переработка природного минерального сырья
- •9.1. Процессы растворения
- •9.2. Процессы кристаллизации
- •9.3. Химическое осаждение
- •9.4. Процессы переработки труднорастворимого сырья
- •10. Химические предприятия верхнекамья
- •10.1. Оао «Уралкалий»
- •10.2. Филиал «Азот» оао «охк уралхим»
- •10.3. Оао «Березниковский содовый завод»
- •10.4. Ооо «Сода-хлорат»
- •10.5. Оао «Метафракс»
- •Рекомендуемая литература
2.2. Энергия в химической технологии
Энерговооруженность общества является условием прогресса человечества, и уровень его материального благосостояния определяется количеством энергии, вырабатываемой на душу населения. Потребление энергии на Земле непрерывно возрастает.
В 1975 г. оно составило 0,25Q, в 2000 г. – 0,8Q, а прогноз на 2100 г. предполагает колоссальную цифру – 7,3Q, где Q = 2,3×1014 кВт×ч.
Выявлена определенная зависимость между потреблением энергии на душу населения обществом и средней продолжительностью жизни. Для достижения устойчивой средней продолжительности жизни, равной 80 лет, потребление энергии на душу населения составляет 7×103 кВт×ч. Этот порог достигли или близки к нему такие страны, как Швеция, Япония, Израиль, Германия, США. В России же потребление энергии составляет 4×103 кВт×ч, что соответствует продолжительности жизни менее 70 лет.
2.2.1. Использование энергии в химической технологии
Химическое производство – одно из самых энергоемких. Доля энергетических затрат в нем составляет 9 %, в то время как в среднем по промышленности она равна 2,5 %. При доле химической отрасли 6% во всей промышленности она потребляет до 12% всей вырабатываемой энергии.
В химической технологии энергия служит для проведения следующих операций:
– химических реакций;
– компрессии газов и жидкостей;
– нагрева материалов;
– проведения тепловых процессов, не связанных с химическими реакциями (ректификация, испарение и другие);
– проведения механических и гидродинамических процессов (фильтрование, измельчение, сушка).
В химическом производстве используют электрическую, тепловую, топливную, световую, ядерную и химическую виды энергии.
Электроэнергия необходима для электрохимических, электротермических, электромагнитных и электростатических процессов, а также для переноса различных материалов и приведения в действие машин и механизмов.
Тепловая энергия применяется для высокотемпературной переработки сырья (обжиг, нагрев аппаратуры, реагентов). Передачу тепла ведут за счет контакта нагреваемой системы с теплоносителем, в качестве которого наиболее распространены горячий воздух, топочные газы, горячая вода и водяной пар. Тепловая энергия, используемая в химической промышленности, делится на высокопотенциальную (более 3500С), среднепотенциальную (100 – 3500С) и низкопотенциальную (50 – 1000С).
Топливная энергия (энергия, полученная при сжигании топлива непосредственно на технологических установках) применяется для производства тепла и электроэнергии в печах специального назначения.
Световую энергию применяют для проведения процессов фотосинтеза, например, при производстве хлороводорода и галогенопроизводных.
Химическая энергия находит применение в работе химических источников тока.
Ядерная энергия применяется для проведения радиационно-химических процессов (например, некоторых полимеризационных процессов, а также для анализа, контроля и регулирования технологических процессов).
В химической промышленности на долю электрической энергии приходится примерно 40%, тепловой – 50%, топливной – 10%. Доля остальных видов энергии составляет менее 1%.
