- •С.Г. Козлов, м.А. Куликов основыхимической технологии
- •240301.65 «Химическая технология неорганических веществ»
- •Введение
- •1. Общие понятия о химическом производстве
- •1.1. Химическая технология как наука
- •1.2. Связь химической технологии с другими науками
- •1.3. Развитие химической технологии
- •1.4. Классификация химической технологии
- •2. Компоненты химического производства
- •2.1. Сырье в химическом производстве
- •2.1.1. Основные определения
- •2.1.2. Классификация сырья
- •2.1.3. Ресурсы и рациональное использование сырья
- •2.1.4. Подготовка минерального сырья
- •2.1.5. Очистка и разделение газовых смесей
- •2.2. Энергия в химической технологии
- •2.2.1. Использование энергии в химической технологии
- •2.2.2. Источники энергии. Классификация источников энергии
- •2.2.3. Рациональное использование энергии
- •2.2.4.Новые виды энергии в химической технологии
- •2.3. Вода в химической промышленности
- •2.3.1. Основные показатели качества воды
- •2.3.2. Промышленная водоподготовка
- •2.4. Воздух в химической технологии
- •3. Критерии оценки эффективности химического производства
- •3.1. Технические показатели
- •3.2. Экономические показатели
- •3.3. Эксплуатационные показатели
- •3.4. Социальные показатели
- •3.5. Материальный и энергетический баланс химического производства
- •4. Системный подход в изучении химико-технологического процесса
- •4.1. Общие понятия и определения
- •4.2. Химико-технологическая система как объект моделирования
- •4.3. Операторы
- •4.4. Матричное представление моделей
- •4.5. Подсистемы хтс
- •4.6. Связи
- •4.7. Классификация технологических схем
- •4.8. Системный подход к разработке технологии производства
- •4.8.1. Методологические принципы
- •4.8.2. Выбор технологии производства продукции
- •4.9. Оптимизация производства
- •4.9.1. Декомпозиция химико-технологических систем
- •4.9.2. Оптимизация химико-технологических систем
- •5. Общие закономерности химических процессов
- •5.1. Понятие о химическом процессе
- •5.2. Классификация химических реакций
- •5.3. Виды химических реакций
- •5.4. Характеристика гомогенных процессов
- •5.5. Основные закономерности гомогенных процессов
- •5.6. Интенсификация гомогенных процессов
- •5.7. Гетерогенные некаталитические процессы
- •5.8. Интенсификация процессов, основанных на необратимых реакциях
- •5.9. Интенсификация процессов, основанных на обратимых реакциях
- •6. Гетерогенный катализ
- •6.1. Общие положения катализа
- •6.2. Процессы адсорбции и хемосорбции в гетерогенном катализе
- •6.2.1. Теория адсорбции Лэнгмюра
- •6.2.2. Нелэнгмюровская адсорбция
- •6.3. Механизм гетерогенных каталитических процессов
- •6.3.1. Внешняя диффузия
- •6.3.2. Внутренняя диффузия
- •6.4. Основные требования к гетерогенным катализаторам
- •6.5. Основные структурные параметры гетерогенных катализаторов
- •6.6. Технологические свойства гетерогенных катализаторов
- •6.7. Классификация гетерогенных катализаторов
- •6.8. Состав катализаторов
- •6.9. Приготовление катализаторов
- •7. Гомогенный катализ
- •7.1. Кислотный (основной) катализ
- •7.1.1. Специфический кислотный катализ
- •7.1.2. Специфический основной катализ
- •7.1.3. Общий кислотный катализ
- •7.1.4. Общий основной катализ
- •7.1.5. Электрофильный катализ
- •7.1.6. Кинетика реакций кислотно-основного катализа
- •7.2. Металлокомплексный катализ
- •7.3. Ферментативный катализ
- •8. Химические реакторы
- •8.1. Принципы классификации химических реакторов
- •8.2. Принципы проектирования химических реакторов
- •8.2.1. Моделирование химических реакторов и протекающих в них процессов
- •8.2.2. Структура математической модели химического реактора
- •8.2.3. Уравнение материального баланса для элементарного объема проточного реактора
- •8.3. Химические реакторы с идеальной структурой потока в изотермическом режиме
- •8.3.1. Реактор идеального смешения (рис)
- •8.3.2. Реактор идеального вытеснения (рив)
- •8.3.3. Примеры аналитического решения математической модели
- •8.4. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения
- •8.5. Конструкции реакторов
- •8.5.1. Требования к реакторным конструкциям
- •8.5.2. Типизация реакторов
- •8.5.3. Примеры конструкций реакторов
- •9. Переработка природного минерального сырья
- •9.1. Процессы растворения
- •9.2. Процессы кристаллизации
- •9.3. Химическое осаждение
- •9.4. Процессы переработки труднорастворимого сырья
- •10. Химические предприятия верхнекамья
- •10.1. Оао «Уралкалий»
- •10.2. Филиал «Азот» оао «охк уралхим»
- •10.3. Оао «Березниковский содовый завод»
- •10.4. Ооо «Сода-хлорат»
- •10.5. Оао «Метафракс»
- •Рекомендуемая литература
5.4. Характеристика гомогенных процессов
Гомогенные процессы, то есть процессы, протекающие в однородной среде (жидкие или газообразные смеси, не имеющие поверхностей раздела, отделяющих части системы друг от друга), сравнительно редко встречаются в промышленности. Чисто гомогенную систему получить трудно, так как любое вещество содержит примеси. Для многих промышленных процессов воздух считается гомогенной средой, а для процесса окисления аммиака тот же воздух из-за наличия в нем пыли, влаги считается гетерогенной средой. Исходное сырье всегда имеет примеси. Поэтому лишь условно можно принять за гомогенные те производственные процессы, которые протекают в газовой или жидкой фазе. В гомогенных системах реакции проходят быстрее, чем в гетерогенных. Осуществление и управление гомогенными процессами, протекающими в гомогенной среде, значительно облегчается. Аппаратура тоже упрощается. Поэтому многие промышленные гетерогенные процессы включают в качестве этапа гомогенный химический процесс в газовой или жидкой фазе. Для гомогенизации системы при проведении химической реакции в однородной среде в промышленности используют разные способы:
– поглощение газов, конденсация паров, растворение или плавление твердых материалов приводящей к получению жидкой среды, в которой быстрее протекают реакции.
– испарение жидкостей или выделение из них в газовую фазу нужных компонентов и проведение реакции в газовой фазе. Например, в башенном методе получения серной кислоты после поглощения окислов азота гомогенно идет образование нитрозилсерной кислоты. В этом же способе используется и газовая реакция окисления двуокиси серы в трехокись при каталитическом действии газообразных окислов азота. Так проводятся многие реакции синтеза, разложения. Рассмотрим характеристики некоторых реакций.
Ассоциацией называется соединение некоторого числа одинаковых молекул в более крупные частицы. Ассоциация молекул происходит как в индивидуальных веществах в жидком и газообразном состоянии, так и в растворах. Например, газообразная двуокись азота в определенных условиях дает четырехокись (реакция 5.14), что и используется при прямом синтезе концентрированной азотной кислоты
NО2 + NО2 ↔N2О4. (5.14)
Уменьшение температуры и рост давления и концентрации увеличивают степень ассоциации и, наоборот, при повышении температуры и снижении давления и концентрации полученный компонент диссоциирует, то есть процесс является обратимым.
Полимеризацией называют процесс соединения большого числа молекул мономера в одну большую молекулу того же состава. Следовательно, при полимеризации не происходит выделения каких-либо побочных продуктов. К полимеризации склонны ненасыщенные соединения, имеющие двойные и тройные связи, а также и насыщенные соединения циклического строения. Полимеризация непредельных углеводородов идет с выделением тепла и уменьшением общего числа молекул в системе, то есть с уменьшением объема, например (5.15),
nСН2=СН2 → (-СН2-СН2-)n. (5.15)
Поэтому повышение давления и понижение температуры способствует ходу процесса. При деполимеризации происходит отщепление мономерных единиц от цепи макромолекулы. В промышленности широко используется гомогенная реакция диссоциации электролита на ионы. При высокой температуре диссоциирует и аммиак (5.16)
2NН3 ↔ N2 + 3Н2. (5.16)
Эта реакция в газовой фазе начинается при 900 – 10000С
Крекинг – метод деструктивной переработки, являющийся частным случаем пиролиза для жидкостей и газов.
Пиролиз – это термическая переработка горючих материалов при температуре 400 – 15000С без доступа воздуха. При пиролизе в результате воздействия высоких температур органические вещества расщепляются с образованием свободных радикалов, предельных и непредельных углеводородов меньшего молекулярного веса, чем исходные. Процессы крекинга углеводородов, полимеризации, да и многие другие химические реакции протекают по цепному механизму. Зарождение цепи происходит вследствие инициирующего действия некоторых высокоактивных веществ или света, высокой температуры. Развитие цепи протекает самопроизвольно. Цепные реакции затухают из-за обрыва цепи.
