- •С.Г. Козлов, м.А. Куликов основыхимической технологии
- •240301.65 «Химическая технология неорганических веществ»
- •Введение
- •1. Общие понятия о химическом производстве
- •1.1. Химическая технология как наука
- •1.2. Связь химической технологии с другими науками
- •1.3. Развитие химической технологии
- •1.4. Классификация химической технологии
- •2. Компоненты химического производства
- •2.1. Сырье в химическом производстве
- •2.1.1. Основные определения
- •2.1.2. Классификация сырья
- •2.1.3. Ресурсы и рациональное использование сырья
- •2.1.4. Подготовка минерального сырья
- •2.1.5. Очистка и разделение газовых смесей
- •2.2. Энергия в химической технологии
- •2.2.1. Использование энергии в химической технологии
- •2.2.2. Источники энергии. Классификация источников энергии
- •2.2.3. Рациональное использование энергии
- •2.2.4.Новые виды энергии в химической технологии
- •2.3. Вода в химической промышленности
- •2.3.1. Основные показатели качества воды
- •2.3.2. Промышленная водоподготовка
- •2.4. Воздух в химической технологии
- •3. Критерии оценки эффективности химического производства
- •3.1. Технические показатели
- •3.2. Экономические показатели
- •3.3. Эксплуатационные показатели
- •3.4. Социальные показатели
- •3.5. Материальный и энергетический баланс химического производства
- •4. Системный подход в изучении химико-технологического процесса
- •4.1. Общие понятия и определения
- •4.2. Химико-технологическая система как объект моделирования
- •4.3. Операторы
- •4.4. Матричное представление моделей
- •4.5. Подсистемы хтс
- •4.6. Связи
- •4.7. Классификация технологических схем
- •4.8. Системный подход к разработке технологии производства
- •4.8.1. Методологические принципы
- •4.8.2. Выбор технологии производства продукции
- •4.9. Оптимизация производства
- •4.9.1. Декомпозиция химико-технологических систем
- •4.9.2. Оптимизация химико-технологических систем
- •5. Общие закономерности химических процессов
- •5.1. Понятие о химическом процессе
- •5.2. Классификация химических реакций
- •5.3. Виды химических реакций
- •5.4. Характеристика гомогенных процессов
- •5.5. Основные закономерности гомогенных процессов
- •5.6. Интенсификация гомогенных процессов
- •5.7. Гетерогенные некаталитические процессы
- •5.8. Интенсификация процессов, основанных на необратимых реакциях
- •5.9. Интенсификация процессов, основанных на обратимых реакциях
- •6. Гетерогенный катализ
- •6.1. Общие положения катализа
- •6.2. Процессы адсорбции и хемосорбции в гетерогенном катализе
- •6.2.1. Теория адсорбции Лэнгмюра
- •6.2.2. Нелэнгмюровская адсорбция
- •6.3. Механизм гетерогенных каталитических процессов
- •6.3.1. Внешняя диффузия
- •6.3.2. Внутренняя диффузия
- •6.4. Основные требования к гетерогенным катализаторам
- •6.5. Основные структурные параметры гетерогенных катализаторов
- •6.6. Технологические свойства гетерогенных катализаторов
- •6.7. Классификация гетерогенных катализаторов
- •6.8. Состав катализаторов
- •6.9. Приготовление катализаторов
- •7. Гомогенный катализ
- •7.1. Кислотный (основной) катализ
- •7.1.1. Специфический кислотный катализ
- •7.1.2. Специфический основной катализ
- •7.1.3. Общий кислотный катализ
- •7.1.4. Общий основной катализ
- •7.1.5. Электрофильный катализ
- •7.1.6. Кинетика реакций кислотно-основного катализа
- •7.2. Металлокомплексный катализ
- •7.3. Ферментативный катализ
- •8. Химические реакторы
- •8.1. Принципы классификации химических реакторов
- •8.2. Принципы проектирования химических реакторов
- •8.2.1. Моделирование химических реакторов и протекающих в них процессов
- •8.2.2. Структура математической модели химического реактора
- •8.2.3. Уравнение материального баланса для элементарного объема проточного реактора
- •8.3. Химические реакторы с идеальной структурой потока в изотермическом режиме
- •8.3.1. Реактор идеального смешения (рис)
- •8.3.2. Реактор идеального вытеснения (рив)
- •8.3.3. Примеры аналитического решения математической модели
- •8.4. Сравнение эффективности проточных реакторов идеального смешения и идеального вытеснения
- •8.5. Конструкции реакторов
- •8.5.1. Требования к реакторным конструкциям
- •8.5.2. Типизация реакторов
- •8.5.3. Примеры конструкций реакторов
- •9. Переработка природного минерального сырья
- •9.1. Процессы растворения
- •9.2. Процессы кристаллизации
- •9.3. Химическое осаждение
- •9.4. Процессы переработки труднорастворимого сырья
- •10. Химические предприятия верхнекамья
- •10.1. Оао «Уралкалий»
- •10.2. Филиал «Азот» оао «охк уралхим»
- •10.3. Оао «Березниковский содовый завод»
- •10.4. Ооо «Сода-хлорат»
- •10.5. Оао «Метафракс»
- •Рекомендуемая литература
2.2.2. Источники энергии. Классификация источников энергии
Основными источниками энергии для промышленности служат горючие ископаемые и продукты их переработки, энергия воды, пара, биомасса и ядерное топливо. Незначительная доля приходится на энергию ветра, солнца, приливов и геотермальную энергию.
Объем энергии, вырабатываемой в настоящее время на планете, составляет примерно 3×1014 кВт×ч в год.
Все энергетические ресурсы подразделяются на первичные и вторичные, возобновляемые и невозобновляемые, топливные и не топливные.
Невозобновляемые энергетические ресурсы связаны с горючими ископаемыми. Среди них каменный уголь, нефть, природный газ, торф, горючие сланцы, битуминозные пески. Остальные виды энергии являются возобновляемыми. К ним относятся энергия солнца, ветра, приливов, био- и геотермальная энергии. Все перечисленные виды энергетических ресурсов являются первичными.
Вторичными энергоресурсами называют энергетический потенциал конечных, побочных и промежуточных продуктов и отходов химического производства, используемых для энергоснабжения установок, машин и механизмов. К ним относят теплоту экзотермических реакций, энтальпию отходящих продуктов процесса, а также потенциальную энергию сжатых газов и жидкостей. Предприятия нефтеперерабатывающей, нефтехимической, газовой и химической промышленности, а также металлургии располагают наибольшими ресурсами вторичной энергии, главным образом, в виде тепловой. Схематично классификация источников энергии приведена на рисунке 2.5.
Рис. 2.5. Классификация энергетических ресурсов
2.2.3. Рациональное использование энергии
Большая доля энергетических затрат в химической продукции требует рационального и экономичного подхода к использованию энергии. Критерием экономичности при этом является коэффициент использования энергии равный отношению количества энергии, теоретически необходимой для производства единицы продукции, к фактически затраченной энергии.
В случае высокотемпературных эндотермических процессов этот коэффициент не превышает 0,7, то есть свыше 30 % энергии теряется с продуктами реакции или путем теплопередачи через стенку в окружающую среду.
Существует ряд методов снижения тепловых потерь, которые сводятся к двум типам: разработке энергосберегающих технологий и экономичному использованию энергии при существующей технологии.
К первому типу относятся следующие мероприятия:
– разработка новых энергоэкономных технологий;
– замена применяемых методов разделения менее энергоёмкими, например, ректификацию на экстракцию;
– создание комбинированных энерготехнологических схем, объединяющих технологические операции, протекающие с поглощением и выделением энергии.
Ко второму типу энергосберегающих мероприятий относится:
– снижение тепловых потерь за счет эффективной теплоизоляции и уменьшения излучающей поверхности аппаратуры;
– снижение потерь на электросопротивление в электрохимических процессах.
2.2.4.Новые виды энергии в химической технологии
В последние десятилетия в химическую технологию все более интенсивно внедряются новые виды энергии, полученные с применением плазмохимических процессов, ультразвука, фото- и радиационного воздействия, низковольтного электрического разряда, лазерного излучения. Эти экстремальные воздействия способствуют активации молекул реакционной системы, возникновению в ней возбужденных частиц и инициированию химического, в том числе с высокой селективностью, процесса. Эта область составляет новый раздел химии – химию высоких энергий (ХВЭ), изучающую состав, свойства и химические превращения в системах, содержащих возбужденные частицы.
Из перечисленных процессов наиболее перспективными и универсальными являются плазмохимические процессы. Они отличаются протеканием химических процессов в плазменном состоянии.
Различают низкотемпературную (103 – 104 К) и высокотемпературную (106 – 108 К) плазму. В химической технологии применяют низкотемпературную плазму. Исследования по применению плазмы в химической промышленности проводились более чем в 70 технологических процессах, некоторые из которых внедрены в производство, в том числе:
– синтез тугоплавких соединений, таких как карбиды урана и тантала, нитриды титана, алюминия, вольфрама;
– восстановление металлов из оксидов и солей (железо, алюминий, вольфрам, никель, тантал);
– окисление различных веществ (азот, хлороводород, оксид углерода, метан);
– пиролиз углеводородного сырья;
– одностадийный синтез из элементов (аммиака, цианистого водорода, гидразина, фторуглеводородов);
– синтез соединений, образующихся только в условиях плазмы: озона, дифторида криптона, оксида серы (II), оксида кремния (II).
В промышленных масштабах плазмохимические процессы применяют для производства ацетилена и водорода из природного газа, ацетилена, этилена и водорода из нефтепродуктов, диоксида титана.
Плазмохимические процессы отличаются очень малым временем контакта 10-2 – 10-5с. Небольшое время контакта определяет незначительные размеры реактора. Плазмохимические процессы легко управляемы, оптимизируются и моделируются, и затраты энергии на их проведение не выше, чем в традиционных процессах.
Особое место в ряду перспективных источников энергии занимает водород. Его применение имеет ряд преимуществ:
– широкое распространение в земной коре (горючие ископаемые) и в виде практически неисчерпаемых водных ресурсов;
– высокое энергосодержание (в 3,5 раза выше, чем энергосодержание нефти);
– экологическая чистота продуктов сгорания (вода).
В России наиболее экономичный источник водорода – природный газ, из которого водород получают путем парокислородной или паровоздушной конверсии, базирующейся на химических реакциях (2.4, 2.5):
СН4 + Н2О ↔ СО + 3Н2, (2.4)
СН4 + ½О2 ↔ СО + 2Н2. (2.5)
