
Термины
Биологически активные добавки (БАД) — концентраты натуральных природных веществ, выделенных из пищевого сырья животного (в том числе морского), минерального, растительного происхождения, или же полученные путем химического синтеза вещества, идентичные природным аналогам.
Биомасса – общая масса особей одного вида, группы видов или сообщества в целом, приходящаяся на единицу площади или объёма местообитания. Биомасса растений называется фитомассой, животных – зоомассой.
Метаболиты – промежуточные продукты ферментативных реакций, протекающих в клетке.
Предельно допустимая концентрация (ПДК) вредных веществ – это максимальная концентрация вредного вещества, которая за определенное время воздействия не влияет на здоровье человека и его потомство, а также на компоненты экосистемы и природное сообщество в целом.
Культивирование – разведение, выращивание растений, злаков, растительных клеток, тканей, микроорганизмов, животных или органов в искусственных условиях. Основными биогенными элементами являются углерод, азот, фосфор, кислород, водород, сера. Это компоненты белков, углеводов и жиров, а также нуклеиновых кислот.
Аэробы – организмы, использующие в качестве акцептора электронов молекулярный кислород; к аэробам относятся все животные и растения, а также многие микроорганизмы.
Анаэробы – организмы, использующие в качестве акцептора электронов не кислород, а другие вещества; к ним относятся многие бактерии, различные инфузории, некоторые черви и моллюски.
Состав микроорганизмов. Группы микроорганизмов
Микроорганизмы содержат те же химические вещества, что и клетки всех живых организмов.
Важнейшими элементами являются органогены (углерод, водород, кислород, азот), которые используются для построения сложных органических веществ: белков, углеводов и липидов. Микроорганизмы содержат также зольные или минеральные элементы. Большая часть их химически связана с органическими веществами, остальные присутствуют в клетке в виде солей.
В количественном отношении самым значительным компонентом клетки является вода, которая составляет 75 - 85%; на долю сухого вещества, которое состоит из органических (белки, нуклеиновые кислоты, углеводы, липиды) и минеральных соединений, приходится 15-25%.
Вода. Значение воды в жизнедеятельности клетки велико. Все вещества поступают в клетку с водой, с ней же удаляются продукты обмена. Вода в микробной клетке находится в свободном состоянии как самостоятельное соединение, но большая часть ее связана с различными химическими компонентами клетки (белками, углеводами, липидами) и входит в состав клеточных структур. Свободная вода принимает участие в химических реакциях, протекающих в клетке, является растворителем различных химических соединений, а также служит дисперсной средой для коллоидов. Содержание свободной воды в клетке может изменяться в зависимости от условий внешней среды, физиологического состояния клетки, ее возраста. Так, у споровых форм бактерий значительно меньше воды, чем у вегетативных клеток. Наибольшее количество воды отмечается у капсульных бактерий. Белки (50-80% сухого вещества) определяют важнейшие биологические свойства микроорганизмов. Это простые белки - протеины и сложные - протеиды. Большое значение в жизнедеятельности клетки имеют нуклеопротеиды - соединение белка с нуклеиновыми кислотами (ДНК и РНК). Кроме нуклеопротеидов, в микробной клетке содержатся в незначительных количествах липопротеиды, гликопротеиды, хромопротеиды.
Белки распределены в цитоплазме, нуклеоиде, они входят в состав структуры клеточной стенки. К белкам принадлежат ферменты, многие токсины (яды микроорганизмов). Видовая специфичность микроорганизмов зависит от количественного и качественного состава белковых веществ. Нуклеиновые кислоты в микробной клетке выполняют те же функции, что и в клетках животного происхождения. ДНК содержится в ядре (нуклеоиде) и обусловливает генетические свойства микроорганизмов. РНК принимает участие в биосинтезе клеточных белков, содержится в ядре и цитоплазме. Общее количество нуклеиновых кислот колеблется от 10 до 30% сухого вещества микробной клетки и зависит от ее вида и возраста.
Углеводы (12-18% сухого вещества) используются микробной клеткой в качестве источника энергии и углерода. Из них состоят многие структурные компоненты клетки (клеточная оболочка, капсула и другие). Углеводы входят также в состав тейхоевой кислоты, характерной для грамположительных бактерий. Клетки микроорганизмов содержат простые (моно- и дисахариды) и высокомолекулярные (полисахариды) углеводы. У ряда бактерий могут быть включения, по химическому составу напоминающие гликоген и крахмал, они играют роль запасных питательных веществ в клетке. Углеводный состав различен у разных видов микроорганизмов и зависит от их возраста и условий развития. Липиды (0,2-40% сухого вещества) являются необходимыми компонентами цитоплазматической мембраны и клеточной стенки, они участвуют в энергетическом обмене. В некоторых микробных клетках липиды выполняют роль запасных веществ.
Липиды состоят в основном из нейтральных жиров, жирных кислот, фосфолипидов. Общее количество их зависит от возраста и вида микроорганизма. Например, у микобактерий туберкулеза количество липидов достигает 40%, что обусловливает устойчивость этих бактерий к воздействию факторов внешней среды.
В клетках микроорганизмов липиды могут быть связаны с углеводами и белками, составляя сложный комплекс, определяющий токсические свойства микроорганизмов. Минеральные вещества - фосфор, натрий, калий, магний, сера, железо, хлор и другие - в среднем составляют 2-14% сухого вещества.
Фосфор входит в состав нуклеиновых кислот, фосфолипидов, многих ферментов, а также АТФ (аденозинтрифосфорной кислоты), которая является аккумулятором энергии в клетке. Натрий участвует в поддержании осмотического давления в клетке. Железо содержится в дыхательных ферментах. Магний входит в состав рибонуклеата магния, который локализован на поверхности грамположительных бактерий.
Для развития микроорганизмов необходимы микроэлементы, содержащиеся в клетке в очень малых количествах. К ним относят кобальт, марганец, медь, хром, цинк, молибден и многие другие. Микроэлементы участвуют в синтезе некоторых ферментов и активируют их. Соотношение отдельных химических элементов в микробной клетке может колебаться в зависимости от вида микроорганизма, состава питательной среды, характера обмена и условий существования во внешней среде.
Классификация на группы микроорганизмов:
а) Гетеротрофы - они не способны синтезировать органические соединения из простых неорганических, а должны получать их в готовом виде. Самая большая группа гетеротрофных бактерий - это "сопробионты". Они питаются мёртвым органическим материалом. Сопробионты бактерии и грибы ответственные за разложение и круговорот органического вещества в почве; многие образуемые при этом соединения имеют специфический запах.
Гетеротрофные клетки и организмы нуждаются в поступлении извне готовых органических веществ: аминокислот, сахаров, липидов, витаминов. В зависимости от того, откуда гетеротрофные организмы получают питательные вещества, их делят на группы. Сапрофиты питаются мертвыми органическими остатками; к ним относятся бактерии гниения, многие грибы. Паразиты существуют только на живых организмах, нанося им вред; это, например, болезнетворные бактерии, грибы - паразиты растений, животных и человека. Третья группа гетеротрофов — голозои. Голозойное питание включает три этапа: поедание, переваривание и всасывание переваренных веществ. Очевидно, что голозойное питание чаще наблюдается у многоклеточных животных, имеющих пищеварительную систему. Голозойно питающихся животных можно подразделить на плотоядных, растительноядных и всеядных.
б) Хемоавтотрофные бактерии получают энергию, необходимую для осуществления синтетических реакций, путём окисления неорганических веществ, которые обеспечивают их энергией подобно свету у фотосинтезирующих организмов. Бактерии, обитающие в глубоководных кратерах при температуре выше 360 градусов тоже хемосинтетики. Они получают энергию превращая сульфид водорода в серу, и кроме того обеспечивают энергией целое сообщество организмов живущих в полной темноте океанических глубин.
Иногда различают хемотрофы — организмы, получающие энергию от окисления неорганических веществ, и хемоорганотрофы — организмы, получающие энергию от окисления органических или неорганических веществ, образовавшихся в результате разложения живых организмов. Одни и те же химические соединения могут как образовываться в результате разложения органики, так и происходить из пород мантии. Например, сероводород или метан могут происходить из пород мантии или образовываться в результате метаморфоза органики осадков, разложения трупа кита или содержимого трюмов затонувшего сухогруза, перевозившего зерно. Виды, имеющие симбиотические хемоавтотрофные бактерии, известны среди кольчатых червей (погонофоры и полихе-ты), моллюсков (двустворчатые и брюхоногие), ракообразных (креветки и морские уточки) и других групп.
Главные представители этого класса - нифтрификаторы, бесцветные серобактерии, железобактерии, бактерии, использующие водород, окись углерода, метан и углерод. Этот перечень показывает, что некоторые хемоавтотрофные бактерии используют любой окисляемый материал, который можно найти на земной поверхности, а именно - аммиак, сероводород, серу, закисное железо, метан и уголь. Водород и окись углерода не встречаются в естественных местообитаниях бактерий. Эти газы являются факультативными компонентами обмена веществ тех бактерий, у которых в нормальных условиях образ жизни гетеротрофен. Тиосульфат иногда встречается в черном иле, но большинство тиосульфатных бактерий может жить и на органических субстратах, следовательно, они также являются факультативными автотрофами.
в) Архебактерии - это строгие анаэробы, метанообразующие бактерии - они обитают в желудочно - кишечном тракте жвачных животных, в сточных водах, болотах и в глубине моря. Большинство запасов природного газа связанно с деятельностью метанообразующих бактерий. Метанобактерии отличаются большим морфологическим разнообразием. Однако К. Уозом и его коллегами из Иллинского университета было доказано, что различные формы метанобактерий имеют гамотологические последовательные рРНК, что свидетельствует об их родстве. Удивительным оказался факт, что эти последовательности оснований резко отличаются от таковых в рРНК других бактерий и эукариот. На основании изложенных фактов было высказано предположения, что метанобактерии появились на Земле около 3-х миллиардов лет назад, когда атмосфера была бескислородой, но обогащённой CO2 и H2. Сейчас они обитают только в пределённых специфических условиях. Отличие метанобактерий от других групп бактерий привели к тому, что их можно отнести к отдельному царству - архебактерий.
М
орфологически
и цитологически они близки к эубактериям
(истинным бактериям), основное отличие
в аппарате синтеза белка. Отличаются
также по химическому строению мембран,
у многих в клеточной стенке есть белковый
слой. По форме клетки могут быть палочками,
кокками, спириллами и др. Развиваются
как в кислородных, так и в бескислородных
условиях.
Метаногены – высокоспециализированные автотрофные анаэробные археи, для которых уникальная в живом мире реакция синтеза метана служит единственным источником энергии. Обитают в донных отложениях водоёмов, пищеварительном тракте растительноядных животных. Играют важнейшую роль в биосферных механизмах, являясь главным источником метана на Земле, большинство запасов природного газа в далёком прошлом образовано благодаря деятельности этих бактерий. Возможно, появились на Земле около 3 млрд. лет назад, когда в атмосфере отсутствовал кислород. Среди архей встречаются виды, способные развиваться при солёности воды, существенно превышающей солёность морской, а также обитающие в горячих источниках, кипящих грязевых котлах и др., способные развиваться при температуре 80—110 °C.