
- •Безопасность Жизнедеятельности
- •Учебное пособие
- •Правила техники безопасности при выполнении лабораторных работ
- •Общие требования безопасности
- •Требования безопасности перед началом работы
- •Требования безопасности во время работы
- •Требования безопасности в аварийных ситуациях
- •Требования безопасности по окончании работы
- •Порядок проведения работы
- •Отчет должен содержать
- •1. Основные свойства радиоактивных веществ
- •Основные характеристики ионизирующих излучений
- •2. Единицы измерения радиоактивности
- •2.1. Радиометрические величины
- •2.2. Дозиметрические величины
- •Основные радиометрические и дозиметрические величины
- •Контрольные вопросы
- •Контроль радиоактивного заражения
- •1. Характеристика радиоактивного заражения среды
- •2. Устройство и принцип работы приборов радиационного контроля (разведки) заражения среды
- •3. Подготовка измерителя мощности дозы дп-5в к работе
- •4. Определение уровня радиации на местности и степени
- •4.1. Определение уровня радиации (мощности экспозиционной дозы) на местности прибором дп-5в проводится в следующей последовательности:
- •4.2. Определение степени радиоактивного заражения объекта (поверхности одежды, техники, оборудования и т.Д.) прибором дп-5в проводится в следующей последовательности:
- •4.3. Определение наличия наведенной радиоактивности техники, подвергшейся воздействию нейтронного излучения, прибором дп-5в проводится в следующей последовательности:
- •4.4. Определение зараженной стороны поверхности объекта (стен, перегородок сооружений и т. Д.) прибором дп-5в проводится в следующей последовательности:
- •4.5. Определение степени радиоактивного заражения воды прибором дп-5в проводится в следующей последовательности:
- •Контроль доз облучения персонала
- •1. Методы измерения ионизирующих излучений
- •2. Устройство и принцип работы приборов дозиметрического контроля
- •3. Подготовка к работе дозиметра карманного, прямопоказывающего дкп-50а
- •4. Определение экспозиционной дозы облучения дозиметром карманным, прямопоказывающим дкп-50а
- •Оценка радиационной обстановки на объектах сельскохозяйственного производства
- •Порядок выполнения работы
- •Отчет должен содержать
- •1. Общие сведения об оценке радиационной обстановки на объектах сельскохозяйственного производства
- •2. Методика оценки радиационной обстановки на объекте
- •2.1. Методика приведения уровней радиации
- •2.2. Методика определения возможных доз облучения при
- •2.3. Методика определения рациональных действий людей на местности, зараженной радиоактивными веществами
- •2.4. Методика определения режимов защиты рабочих и производственной деятельности объекта
- •Контрольные вопросы
- •Порядок проведения работы
- •Отчет должен содержать
- •1. Общие сведения об отравляющих веществах
- •1.1. Токсикологические свойства отравляющих веществ
- •1.2. Физико-химические свойства отравляющих веществ
- •2. Классификация отравляющих веществ
- •2.1. Отравляющие вещества смертельного действия
- •2.1.1. Отравляющие вещества нервно-паралитического действия
- •Вещество VX
- •2.1.2. Отравляющие вещества кожно-нарывного действия
- •2.1.3. Отравляющие вещества общеядовитого действия
- •СинИльная кислота
- •Хлорциан
- •2.1.4. Отравляющие вещества удушающего действия
- •Вещество lsd
- •Вещество Bz
- •2.2.2. Отравляющие вещества раздражающего действия
- •Классификация ов раздражающего действия
- •Хлорацетофенон
- •Вещество cs
- •Капсаицин
- •2.3.2. Токсины, временно выводящие человека из строя стафилококковый энтеротоксин
- •2.4. Дегазаторы
- •3. Первая помощь пострадавшим от ов
- •П риложение 2 к лассификация отравляющих веществ
- •Порядок проведения работы
- •Отчет должен содержать
- •1. Общие сведения об аварийных химически-опасных веществах
- •Классификация ахов по степени воздействия на организм человека
- •1.1. Токсикологические свойства ахов
- •1.2. Физико-химические свойства ахов
- •2. Ахов, используемые в промышленности и сельском хозяйстве
- •2.1. Хлор
- •Воздействие на организм человека
- •2.2. Аммиак
- •Воздействие на организм человека
- •2.3. Сернистый ангидрид
- •Воздействие на организм человека
- •2.4. Сероводород
- •Воздействие на организм человека
- •2.5. Серная кислота
- •Воздействие на организм человека
- •2.6. Соляная кислота
- •Воздействие на организм человека
- •2.7. Азотная кислота
- •Воздействие на организм человека
- •2.8. Бензол
- •Воздействие на организм человека
- •2.9. Ацетонциангидрин
- •Воздействие на организм человека
- •2.10. Определение концентрации ахов в воздухе
- •2.11. Дегазаторы
- •3. Первая помощь пострадавшим от ахов
- •Порядок выполнения работы:
- •1. Методы контроля загрязнения среды агрессивными химически опасными веществами
- •2. Приборы контроля химического загрязнения среды
- •4. Определение концентрации отравляющих веществ в среде
- •4.1. Определение концентрации зарина, зомана и VX в исследуемом воздухе
- •В исследуемом воздухе, почве, сыпучих материалах:
- •4.2. Определение концентрации фосгена, дифосгена,
- •4.3. Определение концентрации иприта в исследуемом воздухе
- •4.4. Определение концентрации газов на местности и предметах
- •4.5. Определение концентрации газов в почве и сыпучих материалах
- •Контрольные вопросы
- •Справочные данные об индикаторных трубках
- •Проверка герметичности насоса
- •Характеристика степени опасности отравляющих веществ
- •Порядок проведения работы
- •Отчет должен содержать
- •1. Общие сведения об основных направлениях защиты населения при авариях на химически опасных объектах
- •2. Методика оценки химической обстановки (прогнозирования масштабов заражения ахов) при авариях на хоо
- •2.1. Принятые допущения
- •2.2. Прогнозирование глубины зоны заражения ахов
- •2.3. Расчет глубины зоны заражения при аварии на хоо
- •2.4. Расчет глубины зоны заражения при разрушении хоо
- •2.5. Определение площади зоны заражения ахов
- •2.6. Определение времени подхода зараженного воздуха к объекту и продолжительности поражающего действия ахов
- •3. Порядок нанесения зон заражения на топографические карты и схемы
- •Задача 2
- •Контрольные вопросы
- •Порядок проведения работы
- •Отчет должен содержать
- •Характеристика особо опасных инфекционных заболеваний человека
- •Характеристика инфекционных заболеваний
- •Характеристика инфекционных заболеваний
- •1. Общие сведения о биологическом оружии
- •1.1. Особенности биологического оружия
- •1.2. Способы и признаки применения биологических средств
- •1.2.1. Аэрозольный способ
- •1.2.2. Трансмиссивный способ
- •1.2.3. Диверсионный способ
- •2. Возбудители и переносчики инфекционных заболеваний
- •2.1. Возбудители инфекционных заболеваний
- •2.2. Переносчики инфекционных заболеваний
- •3. Инфекционные заболевания
- •3.1. Инфекционные заболевания человека
- •3.2. Инфекционные заболевания сельскохозяйственных животных
- •3.3. Инфекционные заболевания растений и вредители сельскохозяйственных культур
- •3.3.1. Заболевания злаков
- •3.3.2. Заболевания картофеля
- •3.3.3. Заболевания хлопчатника
- •3.3.4. Вредители растений
- •4. Основные способы защиты от инфекционных заболеваний
- •Контрольные вопросы
- •Средства коллективной защита
- •Порядок выполнения работы
- •Отчет должен содержать
- •1. Общими сведениями о защите населения от поражающих факторов при авариях на объектах повышенной опасности.
- •2. Средства коллективной защиты от поражающих факторов при авариях на объектах повышенной опасности
- •2.1. Убежища
- •2.2. Противорадиационные укрытия
- •2.3. Простейшие укрытия-щели
- •3. Правила пользования средствами коллективной защиты (защитными сооружениями)
- •Порядок проведения работы
- •Отчет должен содержать
- •1. Классификация средств индивидуальной защиты
- •2. Средства индивидуальной защиты гражданского населения.
- •2.1. Средства защиты органов дыхания
- •2.2. Средства защиты кожи Изолирующие средства защиты кожи – легкий защитный костюм л-1 и общевойсковой защитный комплект озк.
- •2.3. Медицинские средства защиты
- •3. Порядок накопления, хранения и выдачи средств индивидуальной защиты на промышленных и сельскохозяйственных объектах
- •4. Приемы подбора и надевания средств защиты органов дыхания
- •4.1. Приемы подбора и надевания противогазов гп-5 и гп-7
- •4.2. Приемы подбора и надевания респиратора р-2
- •4.3. Приемы подбора и надевания маски птм-1
- •4.4. Изготовление ватно-марлевой повязки
- •Контрольные вопросы
- •Способы и средства специальной обработки
- •Порядок выполнения работы
- •1. Способы и средства для специальной обработки объектов
- •2. Устройство и принцип работы комплектов для специальной обработки объектов
- •3. Подготовка комплектов для специальной обработки к работе
- •3.1. Сборка индивидуального комплекта идк-1, при использовании насоса для накачивания шин, проводится согласно схемы (рис. 1а) в следующей последовательности:
- •3.2. Сборка индивидуального комплекта идк-1, при использовании сжатого воздуха от компрессора, проводится согласно схемы (рис. 1б) в следующей последовательности:
- •3.3. Сборка газожидкостного прибора комплекта дк-4ку, для газожидкостного метода обработки, проводится согласно схемы (рис. 2а) в следующей последовательности:
- •3.4. Сборка газожидкостного прибора комплекта дк-4ку, для обработки методом отсасывания радиоактивной пыли, проводится согласно схемы (рис. 2б) в следующей последовательности:
- •4. Проведение специальной обработки объекта
- •4.1. Проведение специальной обработки объекта комплектом идк-1, при использовании насоса для накачивания шин, осуществляется в следующей последовательности:
- •4.2. Проведение специальной обработки объекта комплектом идк-1, при использовании сжатого воздуха от компрессора., осуществляется в следующей последовательности:
- •4.3. Проведение специальной обработки объекта газожидкостным прибором комплекта дку-4ку по схеме (рис. 2а) осуществляется в следующей последовательности:
- •4.4. Проведение специальной обработки объекта газожидкостным прибором комплекта дку-4ку по схеме (рис. 2б) осуществляется в следующей последовательности:
- •Литература
Основные характеристики ионизирующих излучений
Вид излучения |
Начальная скорость, км/с |
Масса покоя, а.е.м. |
Электрический заряд1 |
Пробег в воздухе, м |
Ионизирующая способность в воздухе, атомов/мм |
Материал защитных экранов2 |
Опасность для организма при облучении: внешнем, внутреннем, комбинированном |
Способность вызывать наведенную радиоактивность, да/нет |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
α-частицы |
|
|
|
|
|
|
|
|
β-частицы |
|
|
|
|
|
|
|
|
γ-лучи |
|
|
|
|
|
|
|
|
X-лучи |
|
|
|
|
|
|
|
|
n (нейтроны) |
|
|
|
|
|
|
|
|
1 Электрический заряд указывать в элементарных единицах, например +2, –1, 0.
2 На выбор предлагаются следующие материалы защитных экранов: бумага, алюминиевая фольга, свинцовые пластины, парафиновые блоки (разместить в соответствующих ячейках таблицы).
2. Единицы измерения радиоактивности
Радиоактивные вещества обладают различными характеристиками, отличающими их друг от друга. В свою очередь, ионизирующие излучения по-разному влияют на облучаемое вещество. Радиометрия и дозиметрия – науки, изучающие характеристики радиоактивных веществ и ионизирующих излучений.
2.1. Радиометрические величины
Радиометрия – наука, позволяющая точно определять содержание и концентрацию радиоактивных веществ в различных средах, в том числе в организме человека. Ниже приведены основные радиометрические характеристики и величины.
Одни радионуклиды распадаются относительно быстро, другие – медленно. Каждый радионуклид имеет индивидуальную характеристику, называемую периодом полураспада.
Период полураспада (T1/2) – время, в течение которого распадается половина исходного числа ядер радиоактивных атомов.
Время это для различных радионуклидов изменяется в широких пределах: от 10-7 секунды до 10 11лет. Например: T1/2 йода-131 – 8 суток, стронция-90 – 29,1 года, цезия-137 – 30 лет, урана-238 – 4,5 миллиарда лет. Радионуклиды, период полураспада которых не превышает нескольких недель, называются короткоживущими; имеющие период полураспада от нескольких месяцев до миллиардов лет – долгоживущими.
Допустим, в каком-либо веществе, например, в одном грамме почвы, содержится 1000 атомов стронция-90. Через 29,1 года останутся неизменными только 500 атомов, а остальные 500 распадутся, испустив β-частицы. Еще через 29,1 года останутся неизменными 250 атомов и так далее. С каждым последующим периодом все меньше и меньше испускается β-частиц – радиоактивность почвы уменьшается.
В реальной жизни количество радиоактивных атомов в веществе огромно и точно сосчитать их практически невозможно – поэтому количество радионуклидов в веществе определяется косвенно, по интенсивности излучения.
Активность радионуклида (A) – величина, характеризующая число радиоактивных распадов в единицу времени.
Чем больше распадается атомов в единицу времени, тем выше активность (а следовательно, и опасность) радионуклида.
В качестве единицы измерения активности в Международной системе единиц (СИ) принят один распад в секунду – эта единица получила название беккерель (Бк), в честь французского физика Анри Беккереля, открывшего явление радиоактивности: 1 Бк = 1 расп./с.
Допустим, специалисты провели анализ почвы и получили результат: в образце почвы есть стронций-90. Активность – 600 Бк: это означает, что в образце почвы каждую секунду распадается 600 ядер этого радионуклида. Поскольку при распаде одного ядра испускается одна β-частица, можно утверждать, что каждую секунду в пространство испускается 600 β-частиц.
Один беккерель – очень маленькая величина. Часто на практике применяется другая (внесистемная) единица измерения активности – кюри (Ки) (названа в честь французских физиков Пьера Кюри и Марии Склодовской-Кюри):
1 Ки = 3,7 ·1010 Бк; 1 Бк = 2,7 ·10–11 Ки.
Активность 1 Ки имеет один грамм чистого радия-226 (следовательно, килограмм радия-226 будет иметь активность 1000 Ки, то есть в этом образце каждую секунду будет распадаться 370 триллионов атомов).
Масса радиоактивного вещества не является мерой его радиоактивности. Препарат с меньшей массой может быть намного более радиоактивным, чем препарат с большей массой. Поэтому специалисты не измеряют количество радиоактивных веществ в килограммах или литрах. Но, зная активность чистого изотопа, можно вычислить его массу с помощью эмпирической формулы:
M = 8,9 ·10-14 ·Am ·T1/2, (1)
где М – масса изотопа активностью в 1 Ки, г; Аm – атомная масса, а.е.м.; T1/2 – период полураспада, с.
Например, три тонны урана-238 и 0,9 миллиграмма кобальта-60 имеют одинаковую активность – 1 Ки.
Радиоактивное вещество может быть распылено на большой территории, а может быть сосредоточено в малом объеме. Концентрация радиоактивного вещества обычно характеризуется концентрацией его активности. Концентрация активности подразделяется на три разновидности:
1. Удельная активность a – концентрация РВ на единицу массы. Измеряется в Бк/кг или Ки/кг.
2. Объемная активность Av – концентрация РВ на единицу объема. Измеряется в Бк/м3 или Ки/м3. Часто измеряется также в Бк/л или Ки/л.
3. Плотность загрязнения территории σ – концентрация РВ на единицу площади. Измеряется в Бк/м2 или Ки/км2.
Три примера:
1. Мясо, привезенное на колхозный рынок, заражено стронцием-90: удельная активность его – 370 Бк/кг. Это означает, что каждую секунду в каждом килограмме мяса распадается 370 ядер стронция-90.
2. В воздухе подвального помещения, как показали замеры, присутствует радиоактивный газ радон-222. Его концентрация (объемная активность) – 185 Бк/л). Это означает, что в каждом литре воздуха каждую секунду распадается 185 ядер радона-222.
3. После аварии на Чернобыльской АЭС загрязненность некоторых районов Российской Федерации цезием-137 составляет 15 Ки/км. Если предположить, что загрязнение равномерно, можно утверждать, что над каждым квадратным километром загрязненной территории рассеяно 172,5 мг чистого цезия-137 (один кюри чистого цезия-137 имеет массу 11,5 мг).
С загрязненной радионуклидами поверхности будет идти непрерывный поток ионизирующих излучений. Интенсивность этого потока характеризуется его плотностью.
Плотность потока частиц I – число частиц, испускаемых в единицу времени с единицы площади.
Измеряется плотность потока в частицах в секунду с квадратного метра (част./с·м2). Например, плотность потока составляет 8000 β-част./с·м2 – это означает, что каждую секунду с каждого квадратного метра площади испускается 8000 β-частиц.