
- •Введение
- •Жаропрочные сплавы
- •Принцип синтеза жаропрочных сплавов. Принципы легирования. Классификация легирующих элементов. Обоснование вакуумной плавки.
- •Основы вакуумной металлургии. Понятие вакуума.
- •Общие характеристики вакуумных насосов
- •Классификация вакуумных насосов
- •2.2.2.1 Механические насосы
- •Механические насосы с масленым уплотнением
- •Двухроторные
- •Турбомолекулярные насосы
- •Пароструйный насос
- •Диффузионные насосы
- •Бустерный насос
- •2.2.2.2.3. Эжекторный насос
- •Водяной пароэжекторный насос
- •Сорбционные насосы
- •2.2.2.3.1. Геттерные насосы (хемосорбция)
- •Способы измерения вакуума
- •Абсолютные вакуумметры
- •2.2.3.1.1. Деформационным маномерам
- •2.2.3.1.2. Жидкостные манометры
- •2.2.3.1.3. Компрессионный маномер Мак Леода
- •Косвенные вакуумметры
- •Тепловые вакуумметры
- •Ионизационные вакуумметры
- •Контроль герметичности вакуумных систем
- •Вакуумметрический метод
- •Метод опрессовки
- •Метод электрического разряда
- •Масс-спектрометрический метод
- •Галогенный метод
- •2.3.1.3. Контроль качества пшз
- •2.3.1.3.1. Реализация методики в анализаторе изображения Thixomet
- •2.3.2. Технология получения точнолитых изделий
- •2.3.2.1. Равноосное литье
- •2.3.2.2. Направленное затвердевание
- •Общие закономерности формирования направленной структуры при высокоградиентной направленной кристаллизации жаропрочных сплавов
- •2.3.2.3. Монокристаллическое литье
- •2.3.2.4. Контроль качества при разных методах литья
- •2.3.2.4.1. Макроструктура жаропрочных сплавов
- •2.3.2.4.2. Микроструктура жаропрочных сплавов
- •2.3.2.4.3. Дефекты заготовок
- •2.3.2.4.4. Технический контроль лопаток
- •2.3.2.5. Сравнительная способность лопаточных сплавов к работе при высокой температуре
- •Дисперсно- упрочненные сплавы
- •Полутвёрдые материалы
- •История развития технологии.
- •Классификация методов обработки сплавов в полутвердом состоянии
- •4.2.1. Трехступенчатые процессы
- •4.2.1.1. Подготовка полупродукта
- •4.2.1.1.1. Механическое перемешивание
- •4.2.1.1.2. Магнитогидродинамическое перемешивание
- •4.2.1.1.3. Метод пластической деформации (метод simAберд)
- •4.2.1.1.4. Перестаривание и частичное расплавление
- •4.2.1.1.5. Производство полупродукта одним слитком (метод ssp)
- •4.2.1.1.6. Метод модифицирования
- •4.2.1.1.7. Технология нового реолитья (нрл).
- •4.2.1.1.9. Методы dmdsrc и mdtrc
- •4.2.1.1.10. Метод - Metal Solid Freeform Fabrication
- •4.2.1.1.11.Порошковое тиксолитье
- •4.2.1.1.12.Метод получения тиксотропной структуры под действием ультразвука
- •4.2.1.2. Повторный нагрев
- •4.2.1.3. Формовка сплавов в полутвердом состоянии
- •4.2.2. Двухступенчатая технология.
- •4.2.2.1. Тиксомолдинг
- •4.2.2.2. Новое реолитье под давлением
- •4.2.2.3. Технология прямого формования металлической жидкотвердой кашеобразной смеси (пфмжкс).
- •4.2.2.4. Технология нового полутвердого литья (New Semi-Solid Casting)
- •4.2.2.5. Новая mit- технология и технология полутвердого реолитья
- •4.3 Физико-химический анализ
- •4.3.1. Реологические свойства жидко-твердых металлических кашеобразных смесей.
- •4.3.2. Эволюция структуры сплавов при их обработке в полутвердом состоянии
- •4.3.3.1. Эволюция микроструктуры полупродукта
- •4.3.3.2. Эволюция структуры тиксотропного материала
- •4.3.4. Оценка структуры сплавов в полутвердом состоянии
- •4.3.4.1. Оценка микроструктуры полупродукта
- •4.3.4.1.1. Традиционный фактор формы
- •4.3.4.1.2. Фактор компактности
- •4.3.4.1.3. Индекс качества Реолитья (икр)
- •4.3.4.1.4. Средний диаметр фрагментированных дендритов
- •4.3.4.2. Оценка микроструктуры тиксотропного материала
- •4.3.3. Прогнозирование составов сплавов для их обработки в полутвердом состоянии
- •4.3.3.1. Дифференциально-сканирующая калориметрия
- •4.3.3.2. Параметры для выбора состава
- •4.4. Достоинства технологии осптс
- •5.Металлургическая экспертиза
- •5.1 Инструменты и методы
- •5.2 Разработка количественных методов оценки структуры
- •5.2.1 Методика количественной оценки микроструктурной полосчатости
- •Разработка эталонных шкал для визуальной оценки структурной полосчатости трубных сталей.
- •0 Балл
- •2 Балл
- •Анализ стереологических параметров для оценки полосчатости структур
- •Дерево решений для назначения балла.
- •Подготовка образцов к исследованиям
- •Погрешность измерений
- •Метод количественной оценки анизотропии структуры
- •Методика количественной оценки бейнита реечной морфологии
- •Методика количественной оценки ликвационной полосы
- •Разработка методики количественной оценки загрязненности низколегированных трубных сталей неметаллическими включениями.
- •Разделение включений по типам.
- •Градуировочные кривые для назначения балла
- •Подготовка образцов к измерениям
- •5.5. Примеры практического использования
- •5.5.1. Материалы и методика
- •5.5.2. Неметаллические включения и природа дефектов холоднокатаного листа
- •5.5.5.1. Дефект «плена»
- •5.5.3. Высокопрочные судостроительные стали.
- •5.5.4. Электротехнические марки стали.
- •5.5.5. Природа дефектов горячекатаного листа из трубных марок стали.
- •5.5.4.1. Дефекты имеющие сталеплавильную природу
- •5.5.4.1.1. Дефект «раскатанная трещина».
- •5.5.4.1.2. Дефект «плена»
- •5.5.4.1.3. Дефект «слиточная рванина».
- •5.5.4.1.4. Дефект «внутренние расслоения».
- •5.5.4.2. Дефекты, образовавшиеся на этапе прокатного производства
- •5.5.4.2.1. Дефект «волосовина»
- •5.5.4.2.2. Дефект «прикромочная трещина»
- •5.5.4.2.3. Дефект «прокатная плена».
- •5.5.4.2.4. Дефект «закат» из_за глубоких следов зачистки.
- •5.5.4.3. Критерии идентификации брака
- •Список литературы
2.2.3.1.2. Жидкостные манометры
В качестве рабочей жидкости для заполнения рассмотренных манометров применяют ртуть и масло. Масляные манометры имеют большую чувствительность, так как плотность масла примерно в 15 раз меньше плотности ртути. Однако масло хорошо растворяет газы, и перед работой требуется его тщательное обезгаживание.
Пределы измерения ртутных манометров 105... 103Па, а масляных— 105... 10° Па. Погрешность при отсчете уровня h может быть доведена до 0,1 мм. Более точное измерение уровня не имеет смысла из-за непостоянства величины поверхностного натяжения, колебаний плотности, температурных градиентов рабочей жидкости и т. д. Чувствительность манометров к перепаду давлений в основном ограничивается вязкостью самой жидкости.
Простейшими гидростатическими преобразователями являются жидкостные манометры с открытым и закрытым коленом. Измеряемая этими манометрами разность давлений уравновешивается весом столба жидкости высотой h:
(pср-p)=gρh
где g — ускорение земного притяжения; ρ— плотность жидкости.
Манометры с открытым коленом (рис. 34, а) удобны для измерения давлений, близких к атмосферному. В этом случае рcр = pа и высота столба h минимальна. Показания такого манометра зависят от атмосферного давления. В манометре с закрытым коленом (рис. 34, б) перед заполнением рабочей жидкостью получают давление рср=0, что позволяет непосредственно измерять абсолютное давление газа в вакуумной системе. В этом случае показания прибора не зависят от атмосферного давления. При измерении малых давлений (менее 2∙104 Па) манометр с закрытым коленом имеет меньшие габариты.
2.2.3.1.3. Компрессионный маномер Мак Леода
Гидростатические манометры с предварительным сжатием газа называются компрессионными. Компрессионный манометр (рис. 35 ) состоит из измерительного баллона 2 с капилляром К1, резервуара со ртутью 1, соединительного трубопровода 3 с капилляром К2. Через азотную ловушку 4 манометр подключается к вакуумной системе. Баллон 2 перед началом измерений соединяется с вакуумной системой через трубку 3. Из баллона 1 под давлением атмосферного воздуха ртуть поднимается вверх по трубке T, отключает баллон 2 от вакуумной системы и сжимает заключенный в баллоне газ до давления, которое можно непосредственно измерить по разности уровней ртути в закрытом и сравнительном капиллярах К1 и К2. После компрессии давление измеряется точно так же, как и в обычном ртутном манометре с закрытым коленом.
Уравнение компрессионного манометра на основании закона Бойля — Мариотта имеет следующий вид:
pV0 = (p + ρgh)V,
Диапазон измерения компрессионных манометров 101... 10~3 Па. Трудности в измерении более низких давлений связаны с непостоянством капиллярной депрессии ртути (понижение уровня ртути в капилляре по сравнению с ее уровнем в сообщающемся с капилляром широком сосуде); откачивающим действием струи ртутного пара из манометра в ловушку.
Компрессионный манометр относится к абсолютным приборам и используется в качестве образцового для градуировки других приборов. Его показания не зависят от рода газа. Однако компрессионным манометром нельзя измерить давление паров тех веществ, у которых упругость насыщенных паров при температуре измерения меньше давления в измерительном капилляре после сжатия; нельзя проводить непрерывное измерение давления. Недостатком манометра является также то, что он должен присоединяться к вакуумной системе через азотную ловушку.