
- •Введение
- •Жаропрочные сплавы
- •Принцип синтеза жаропрочных сплавов. Принципы легирования. Классификация легирующих элементов. Обоснование вакуумной плавки.
- •Основы вакуумной металлургии. Понятие вакуума.
- •Общие характеристики вакуумных насосов
- •Классификация вакуумных насосов
- •2.2.2.1 Механические насосы
- •Механические насосы с масленым уплотнением
- •Двухроторные
- •Турбомолекулярные насосы
- •Пароструйный насос
- •Диффузионные насосы
- •Бустерный насос
- •2.2.2.2.3. Эжекторный насос
- •Водяной пароэжекторный насос
- •Сорбционные насосы
- •2.2.2.3.1. Геттерные насосы (хемосорбция)
- •Способы измерения вакуума
- •Абсолютные вакуумметры
- •2.2.3.1.1. Деформационным маномерам
- •2.2.3.1.2. Жидкостные манометры
- •2.2.3.1.3. Компрессионный маномер Мак Леода
- •Косвенные вакуумметры
- •Тепловые вакуумметры
- •Ионизационные вакуумметры
- •Контроль герметичности вакуумных систем
- •Вакуумметрический метод
- •Метод опрессовки
- •Метод электрического разряда
- •Масс-спектрометрический метод
- •Галогенный метод
- •2.3.1.3. Контроль качества пшз
- •2.3.1.3.1. Реализация методики в анализаторе изображения Thixomet
- •2.3.2. Технология получения точнолитых изделий
- •2.3.2.1. Равноосное литье
- •2.3.2.2. Направленное затвердевание
- •Общие закономерности формирования направленной структуры при высокоградиентной направленной кристаллизации жаропрочных сплавов
- •2.3.2.3. Монокристаллическое литье
- •2.3.2.4. Контроль качества при разных методах литья
- •2.3.2.4.1. Макроструктура жаропрочных сплавов
- •2.3.2.4.2. Микроструктура жаропрочных сплавов
- •2.3.2.4.3. Дефекты заготовок
- •2.3.2.4.4. Технический контроль лопаток
- •2.3.2.5. Сравнительная способность лопаточных сплавов к работе при высокой температуре
- •Дисперсно- упрочненные сплавы
- •Полутвёрдые материалы
- •История развития технологии.
- •Классификация методов обработки сплавов в полутвердом состоянии
- •4.2.1. Трехступенчатые процессы
- •4.2.1.1. Подготовка полупродукта
- •4.2.1.1.1. Механическое перемешивание
- •4.2.1.1.2. Магнитогидродинамическое перемешивание
- •4.2.1.1.3. Метод пластической деформации (метод simAберд)
- •4.2.1.1.4. Перестаривание и частичное расплавление
- •4.2.1.1.5. Производство полупродукта одним слитком (метод ssp)
- •4.2.1.1.6. Метод модифицирования
- •4.2.1.1.7. Технология нового реолитья (нрл).
- •4.2.1.1.9. Методы dmdsrc и mdtrc
- •4.2.1.1.10. Метод - Metal Solid Freeform Fabrication
- •4.2.1.1.11.Порошковое тиксолитье
- •4.2.1.1.12.Метод получения тиксотропной структуры под действием ультразвука
- •4.2.1.2. Повторный нагрев
- •4.2.1.3. Формовка сплавов в полутвердом состоянии
- •4.2.2. Двухступенчатая технология.
- •4.2.2.1. Тиксомолдинг
- •4.2.2.2. Новое реолитье под давлением
- •4.2.2.3. Технология прямого формования металлической жидкотвердой кашеобразной смеси (пфмжкс).
- •4.2.2.4. Технология нового полутвердого литья (New Semi-Solid Casting)
- •4.2.2.5. Новая mit- технология и технология полутвердого реолитья
- •4.3 Физико-химический анализ
- •4.3.1. Реологические свойства жидко-твердых металлических кашеобразных смесей.
- •4.3.2. Эволюция структуры сплавов при их обработке в полутвердом состоянии
- •4.3.3.1. Эволюция микроструктуры полупродукта
- •4.3.3.2. Эволюция структуры тиксотропного материала
- •4.3.4. Оценка структуры сплавов в полутвердом состоянии
- •4.3.4.1. Оценка микроструктуры полупродукта
- •4.3.4.1.1. Традиционный фактор формы
- •4.3.4.1.2. Фактор компактности
- •4.3.4.1.3. Индекс качества Реолитья (икр)
- •4.3.4.1.4. Средний диаметр фрагментированных дендритов
- •4.3.4.2. Оценка микроструктуры тиксотропного материала
- •4.3.3. Прогнозирование составов сплавов для их обработки в полутвердом состоянии
- •4.3.3.1. Дифференциально-сканирующая калориметрия
- •4.3.3.2. Параметры для выбора состава
- •4.4. Достоинства технологии осптс
- •5.Металлургическая экспертиза
- •5.1 Инструменты и методы
- •5.2 Разработка количественных методов оценки структуры
- •5.2.1 Методика количественной оценки микроструктурной полосчатости
- •Разработка эталонных шкал для визуальной оценки структурной полосчатости трубных сталей.
- •0 Балл
- •2 Балл
- •Анализ стереологических параметров для оценки полосчатости структур
- •Дерево решений для назначения балла.
- •Подготовка образцов к исследованиям
- •Погрешность измерений
- •Метод количественной оценки анизотропии структуры
- •Методика количественной оценки бейнита реечной морфологии
- •Методика количественной оценки ликвационной полосы
- •Разработка методики количественной оценки загрязненности низколегированных трубных сталей неметаллическими включениями.
- •Разделение включений по типам.
- •Градуировочные кривые для назначения балла
- •Подготовка образцов к измерениям
- •5.5. Примеры практического использования
- •5.5.1. Материалы и методика
- •5.5.2. Неметаллические включения и природа дефектов холоднокатаного листа
- •5.5.5.1. Дефект «плена»
- •5.5.3. Высокопрочные судостроительные стали.
- •5.5.4. Электротехнические марки стали.
- •5.5.5. Природа дефектов горячекатаного листа из трубных марок стали.
- •5.5.4.1. Дефекты имеющие сталеплавильную природу
- •5.5.4.1.1. Дефект «раскатанная трещина».
- •5.5.4.1.2. Дефект «плена»
- •5.5.4.1.3. Дефект «слиточная рванина».
- •5.5.4.1.4. Дефект «внутренние расслоения».
- •5.5.4.2. Дефекты, образовавшиеся на этапе прокатного производства
- •5.5.4.2.1. Дефект «волосовина»
- •5.5.4.2.2. Дефект «прикромочная трещина»
- •5.5.4.2.3. Дефект «прокатная плена».
- •5.5.4.2.4. Дефект «закат» из_за глубоких следов зачистки.
- •5.5.4.3. Критерии идентификации брака
- •Список литературы
2.3.2.4.4. Технический контроль лопаток
Лопатки проверяют как в процессе механической обработки, так и после ее окончания. Контроль лопаток включает в себя: выявление внешних и внутренних дефектов материала; проверку шероховатости обрабатываемых поверхностей в соответствии с требованиями чертежа; проверку размеров, формы профилей пера (спинки, корыта) и замков и их взаимного расположения; определение массы и частоты собственных колебаний лопаток; выборочные испытания рабочих лопаток турбины и компрессора на усталость. В пустотелых охлаждаемых рабочих лопатках ТНД проверяют расход воды через внутреннюю полость (испытания лопаток на пролив).
Контроль внешних и внутренних дефектов материала лопаток позволяет выявить трещины и волосовины на поверхности, раковины, пористость, расслоения, инородные включения и флокены в материале. Для этой цели применяют травление, цветную дефектоскопию, люминесцентный, магнитный и ультразвуковой методы контроля.
Магнитопорошковый метод основан на притяжении частиц порошка железа к магнитным полюсам, образующимся у намагниченной детали в местах нарушения сплошности. Магнитопорошковым методом выявляются трещины с шириной раскрытия 0,001 мм и более, глубиной 0,01 мм и более. Относительная простота и довольно высокая надежность этого метода способствовали его широкому внедрению.
Цветной и люминесцентный методы контроля (капиллярные методы дефектоскопии) применяются для выявления дефектов, выходящих на поверхность детали. Метод цветной дефектоскопии основан на способности специальной красной краски проникать в глубь поверхностных дефектов и белой краски впитывать в себя красную краску из дефекта. Метод обнаруживает трещины шириной от 0,01 мм, по глубине от 0,05 мм и по протяженности от 0,3 мм.
Люминесцентный метод (ЛЮМ-А) основан на способности некоторых жидкостей светиться при облучении ультрафиолетовым светом. Люминесцентный метод ЛЮМ-А надежно выявляет выходящие на поверхность трещины, поры, рыхлоты, окисные пленки, засоры и т.д. Он обнаруживает трещины шириной от 0,01 мм, по глубине от 0,05 мм и по протяженности от 0,2 мм. Чувствительность метода ЛЮМ-А несколько выше метода цветной дефектоскопии. Внутренние дефекты материала лопаток проверяются рентгеновским и ультразвуковым методами.
Рентгеновский метод обнаружения дефектов основан на ослаблении рентгеновского излучения материалом детали, при котором теневое изображение просвечиваемой детали регистрируется на рентгенографической пленке. Достоинством метода является высокая чувствительность к выявлению в материале детали внутренних пор, раковин, инородных включений и др. Для просвечивания литых лопаток турбины используются передвижные кабельные рентгеновские аппараты типа РУП-100-10, РУП-150-10-1 и др.
Ультразвуковой метод контроля с использованием поверхностных волн позволяет выявлять поверхностные трещины и металлургические дефекты материала. Данный метод применяется обычно для выявления трещин входной и выходной кромок, реже — на поверхности спинки и корыта, возникающих при изготовлении и эксплуатации лопатки. Метод основан на прозвучивании контролируемого материала кратковременными импульсами ультразвуковых колебаний, распространяющихся по поверхности лопатки, и улавливании их отражений (эхо-сигналов) от дефектов.
Контроль геометрических размеров, формы профилей пера и замка и их взаимного расположения. Операции этого вида технического контроля лопаток наиболее трудоемкие. Приборы, применяемые на этих операциях, можно разделить на две основные группы: бесконтактные — оптико-проекционные и контактные — механические, оптико-механические, пневматические и пневмогидравлические.
Перо лопатки проверяют в расчетных поперечных сечениях бесконтактными и контактными методами. Одним из бесконтактных методов контроля является проверка профиля на проекторах, используемая в единичном производстве. У нас они не нашли применения.
При малом масштабе производства профиль пера лопаток иногда проверяют шаблонами. Отклонение профиля спинки и корыта от шаблона определяют визуально на просвет или с помощью щупа. Контроль пера шаблонами малопроизводителен, субъективен и требует громоздкого шаблонно-измерительного хозяйства.
В серийном производстве использовались механические приборы с индикаторами часового типа, настраиваемые по эталонной лопатке. Они просты и удобны в работе, но малопроизводительны.
Многомерные приборы и измерительные машины производительны. Их можно быстро переналаживать на контроль других лопаток по эталонной лопатке. Базой для крепления лопатки является замок или центровые углубления, два из которых имеются на боковых поверхностях замка и одно — у конца пера. К числу таких приборов относятся универсальные многомерные оптико-механические приборы типа ПОМКЛ для одновременного контроля профиля пера, смещения пера с оси замка, угла закрутки и толщины пера в поперечных сечениях лопатки компрессора
Основные геометрические параметры замков лопаток турбины и компрессора обычно проверяются механическими приборами с индикаторными часами, настраиваемыми по эталону.
Расход воды через внутреннюю полость пера охлаждаемых лопаток ТНД проверяют на специальной установке. Лопатка устанавливается в приспособление и проливается водой при избыточном давлении в 4±0,05 кгс/см2 (0,3±0,005 МПа) и температуре 20±5 "С в течение 20 с. Проверяют пропускную способность внутреннего канала у всего I комплекта лопаток данной ступени. Сравнивают среднее значение расхода с результатом пролива каждой лопатки в комплекте. Различие по расходу воды у рабочих лопаток в комплекте (разнорасходность) должна составлять не более 13... 15 % от среднего расхода воды в комплекте лопаток
Частоты собственных колебаний рабочих лопаток турбины и компрессора проверяют на электродинамических вибростендах.
Рабочие лопатки турбины и компрессора взвешивают на весах типа ВТК-500 с точностью 0,1 г.