
- •Теплогазопостачання і вентиляція житлових будинків
- •Рецензенти:
- •Рекомендовано вченою радою ДонДту (Протокол № 7 від 29.10.2010)
- •2.1 Системи скріпленої теплоізоляції
- •2.2 Вентильований фасад з повітряним зазором
- •2.3 Системи, сконструйовані за принципом "сандвіч", утеплення цегляних будинків за методом колодязного мурування та енергозберігаюче захисне покриття
- •Розділ 3. Сучасний стан і перспективи розвитку матеріально-технічної бази виробництва теплоізоляційних матеріалів
- •4.1 Теплопередача через огородження та способи передачі тепла
- •4.2 Температурні поля
- •5.1 Теплова обстановка в приміщеннях
- •5.2 Необхідний опір теплопередачі зовнішнього огородження
- •5.3 Тепловтрати через огороджуючі конструкції
- •5.4 Питома теплова характеристика будівлі
- •6.1 Вимоги до опалювальних установок
- •6.2 Класифікація систем опалення
- •6.3 Характеристика теплоносіїв для систем опалення
- •6.4 Техніко-економічне порівняння систем опалення
- •7.1 Вимоги до нагрівальних приладів
- •7.2 Основні види нагрівальних приладів
- •7.3 Вибір, розміщення й установка нагрівальних приладів
- •7.4 Визначення необхідної поверхні нагрівальних приладів
- •7.5 Трубопроводи систем центрального опалення,
- •7.6 Регулювання тепловіддачі нагрівальних приладів
- •8.1 Класифікація систем водяного опалення
- •8.2 Будова і принцип дії систем водяного опалення
- •8.3 Деталі будови систем водяного опалення
- •Розділ 9. Гідравлічний розрахунок трубопроводів систем водяного опалення
- •9.1 Природний тиск, що виникає в системах водяного опалення
- •9.2 Розрахунок трубопроводів двотрубної системи водяного
- •9.3 Сфера застосування систем водяного опалення
- •9.4 Розрахунок трубопроводів систем водяного опалення
- •9.5 Особливості розрахунку однотрубних систем водяного
- •9.6 Сфера застосування систем водяного опалення
- •10.1 Властивості пари як теплоносія в системі
- •10.2 Класифікація систем парового опалення
- •10.3 Будова систем парового опалення низького тиску
- •10.4 Гідравлічний розрахунок систем парового опалення
- •10.5 Визначення обсягу конденсаційного бака і підбір насоса
- •10.6 Системи парового опалення високого тиску
- •10.7 Розрахунок трубопроводів систем парового опалення
- •11.1 Класифікація систем повітряного опалення:
- •11.2 Розрахунок систем повітряного опалення
- •12.1 Загальні відомості
- •12.2 Системи панельно-променевого опалення
- •12.3 Техніко-економічні характеристики систем
- •13.1 Загальні відомості про котельні установки
- •13.2 Визначення поверхні нагрівання котлів
- •13.3 Димові труби і лежаки
- •13.4 Визначення річної витрати палива
- •13.5 Компонування котельні
- •14.1 Загальні відомості про теплопостачання
- •14.2 Класифікація систем теплопостачання
- •14.3 Районні котельні та теплоелектроцентралі (тец)
- •14.4 Способи прокладки теплопроводів
- •14.5 Приєднування споживачів до теплових мереж
- •14.6 Будова, розрахунок, підбір і установка гідроелеватора
- •15.1 Основні завдання експлуатації систем опалення
- •15.2 Пуск систем опалення в дію
- •15.3 Експлуатація теплових мереж
- •16.1 Газові магістральні й розподільні мережі
- •16.2 Будова внутрішніх газопроводів
- •16.3 Газові прилади
- •16.4 Основні положення з експлуатації систем
- •89. Энергоаудит и энергетическая паспортизация жилых зданий – путь стимулирования энергосбережения. // Электронный журнал энергосервисной компании «Экологические системы». – 2004. – №4.
6.3 Характеристика теплоносіїв для систем опалення
Будь-який теплоносій для систем центрального опалення повинен задовольняти наступним вимогам:
– мати велику акумулюючу спроможність, припускати якісне та кількісне регулювання і задовольняти санітарно-гігієнічним вимогам опалювальних приміщень; бути рухливим (на його переміщення не повинно витрачатися багато енергії);
– бути дешевим і зручним в експлуатації, відповідати нормам пожежної профілактики та охорони праці.
Цим вимогам у тій чи іншій мірі задовольняють основні теплоносії: вода, пара і повітря.
Розглянемо основні характеристики теплоносіїв.
Вода має велику теплоємкість і густину, що дозволяє передавати велику кількість теплоти при малому об’ємі теплоносія. Це забезпечує малий розмір трубопроводів і відносно невисокі тепловтрати. Можливість зміни температури води дозволяє контролювати температуру тепловіддаючих поверхонь нагрівальних приладів та теплопроводів відповідно до санітарно-гігієнічних вимог і підтримувати рівномірний температурний режим упродовж усього опалювального сезону.
З метою зменшення витрат енергії швидкість руху води в системах опалення звичайно обмежують до 1,5 м/с.
До недоліків застосування води можна віднести значний гідростатичний тиск і витрати металу в системах; теплову інерцію води в опалювальних приладах, що знижує якість регулювання їхньої тепловіддачі.
Пара, яка використовується у системах опалення, має малу густину, але в ній міститься велика кількість тепла, яке виділяється при конденсації пари в нагрівальних приладах (2260÷2160 кДж/кг), що дозволяє передавати на великі відстані значні кількості тепла з мінімальними втратами. Крім того, при використанні пари в якості теплоносія істотно скорочується кількість нагрівальних приладів, тому що температура останнього значно вище, ніж температура гарячої води. До недоліків пари в якості теплоносія варто віднести неможливість центрального якісного регулювання тепловіддачі нагрівальних приладів, високу температуру на поверхні останніх та можливість пригоряння на них органічного пилу, що погіршує санітарно-гігієнічні умови опалювальних приміщень. Крім того, втрати тепла паропроводами і конденсатовідводами значно перевищують втрати тепла трубопроводами водяних систем опалення; паропроводи більш складні в експлуатації і мають менший термін роботи через підвищену корозію труб.
Повітря має малу густину (1,0÷1,2 кг/м3) та низьку питому теплоємкість (1,0 кДж/(кг ∙°С) і для передачі навіть невеликої кількості тепла потрібно переміщувати значний обсяг повітря. Це призводить до збільшення розмірів повітроводів і до більших енерговтрат, ніж при транспортуванні такої ж кількості тепла за допомогою води або пари. При використанні повітря в якості теплоносія відбувається помітне зниження його температури по довжині повітроводів, зростання втрат тепла, теплоізоляційного матеріалу та палива.
Застосування повітря в якості теплоносія є вигідним при поєднанні обігріву з вентиляцією приміщення.
При використанні повітря відсутня теплова інерція, тобто забезпечується миттєвий тепловий ефект при вмиканні системи в роботу, не потрібне встановлення в опалювальному приміщенні будь-яких нагрівальних приладів. Повітря є добре регульованим (по температурі та кількості) теплоносієм.
З розглянутих теплоносіїв найпоширенішим є вода, при використанні якої легко здійснюється центральне регулювання відпуску тепла споживачу.