Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МОС МУ по ПЗ, кор 2012 .doc
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
4.94 Mб
Скачать
        1. Решение прямоугольных и четвертных сферических треугольников.

Прямоугольные и четвертные сферические треугольники являются частным случаем косоугольных сферических треугольников.

Прямоугольным сферическим треугольником называется такой сферический треугольник, у которого один из углов равен 90°.

Четвертным сферическим треугольником называется такой сферический треугольник, у которого одна из сторон равна 90°.

К этим треугольникам применимы все правила и алгоритмы решения косоугольных сферических треугольников.

Прямоугольные треугольники можно решать по основным формулам сферической тригонометрии. Так как один из углов равен 90°, формулы значительным образом упрощаются (sin(90°)=1, cos(90°)=0) и состоят, как правило, из двух множителей. Но более рационально производить решение по правилам Модюи-Непера, почти полностью исключающим промежуточные преобразования, а значит и ускоряющим решение

Правила Модюи-Непера формулируются следующим образом:

  1. В прямоугольном сферическом треугольнике косинус любого среднего элемента равен произведению котангенсов крайних смежных с ним элементов.

  2. Косинус отдельно лежащего элемента сферического треугольника равен произведению синусов двух не смежных с ним рядом лежащих элементов.

В обоих правилах принято, что катеты лежат рядом друг с другом и вместо катетов надо брать их дополнения до 90°.

Ф

(1.0)

ормул такого вида 10. Все они однотипны, поэтому для примера приведём четыре характерных:

П ри А=90°

cos a = ctg B ctg C

cos B = ctg a ctg (90° – c)

(1.0)

c os (90° – c) = sin C sin a

cos a = sin (90° – b) sin (90° – c)

Следовательно, в задаче на прямоугольный треугольник, надо задать два элемента и указать, какой угол равен 90°.

Четвертные сферические треугольники, как и прямоугольные можно решать по основным формулам сферической тригонометрии. Т.к. одна из сторон равна 90°, формулы значительным образом упрощаются (sin(90°)=1, cos(90°)=0) и состоят, как правило, из двух множителей.

      1. Математическая обработка статистических данных.

        1. Обработка результатов равноточных измерений навигационных параметров.

            1. Ошибки наблюдения и их классификация.

Все наблюдения навигационных параметров, да и не только их, сопровождаются ошибками. Судоводитель в своей работе обязан уметь обрабатывать различные параметры, содержащие ошибки.

Эти ошибки по своим свойствам и характеру можно разбить на три основные группы:

  • систематические ошибки это ошибки, характер и причины, возникновения которых известны или предвидимы. Рациональной методикой измерений и определёнными способами обработки результатов, влияние этих ошибок можно не только ослабить, но и исключить.

  • Случайные ошибки это ошибки, которые вызваны многообразными и противоречивыми причинами, не поддающимися учёту и существенно не связанные с производством наблюдений, а их величина и знак для каждого измерения свои.

  • Промахи определяются как неверные наблюдения или просчёты выходящие за пределы точности данного ряда измерений. Промахи из дальнейшей обработки исключаются.

Обработка наблюдений содержащих систематические ошибки будет рассмотрена в дальнейших работах.

Экспериментально установлено, что почти всегда случайным ошибкам измерения присущи следующие свойства:

  1. среднее значение случайных ошибок близко к нулю;

  2. вероятность появления ошибок равных по значению, но противоположных по знаку, одинакова;

  3. численно небольшие ошибки более вероятны, чем численно большие;

  4. случайные ошибки не могут превзойти некоторых границ, связанных с точностью производимых измерений;

  5. внутри этих границ случайные ошибки могут принимать любые значения в соответствии с пп. 2 и 3.