
- •Введение
- •Систематика задач дозиметрии
- •История деятельности комиссии по радиологической защите
- •Развитие рекомендаций комиссии рекомендация 60
- •Цели данной публикации
- •Область применения рекомендаций комиссии
- •Раздел 1. Поле ионизирующего излучения, основные понятия
- •1.1. Основные типы полей ионизирующего излучения
- •1.2. Основные единицы измерения поля излучения
- •Радиевый гамма-эквивалент. Керма-эквивалент
- •1.3. Векторные и скалярные характеристики поля излучения
- •1.3.1. Скалярные характеристики поля излучения
- •1.3.2. Векторные характеристики поля излучения
- •1.4. Связь между характеристиками поля излучения и показаниями детектора
- •Раздел 2. Классификация источников ионизирующего излучения
- •2.1. Типы радионуклидных источников
- •2.2. Геометрия узкого и широкого пучка гамма–излучения
- •Раздел 3. Основные закономерности ослабления фотонного излучения
- •3.1. Интенсивность излучения точечного изотропного моноэнергетического источника
- •3.2. Интенсивность излучения точечного источника излучения, (тонкий луч)
- •3.3. Интенсивность в точке
- •3.4. Ослабление потока фотонного излучения
- •Раздел 4. Дозовые характеристики поля излучения основные дозиметрические величины
- •4.1. Экспозиционная доза и ее мощность, единицы измерения
- •4.1.1. Экспозиционная доза.
- •4.1.2. Эффективный атомный номер вещества
- •4,1.3. Энергетические эквиваленты рентгена
- •4.1.4. Мощность экспозиционной дозы, уровень радиации
- •4.1.5. Связь между мощностью дозы и интенсивностью излучения
- •4.1.5.Гамма–постоянная и гамма–эквивалент
- •4.1.6. Керма–постоянная и керма–эквивалент
- •4.2. Поглощенная доза и ее мощность
- •4.2.1. Поглощенная доза, единицы измерения
- •4.2.2. Мощность поглощенной дозы
- •4.2.3. Распределение дозы по глубине биоткани
- •4.3. Керма и ее мощность
- •4.4. Биологическое действие ионизирующего злучения
- •4.4.1. Особенности воздействия ионизирующего излучения при действии на живой организм
- •4.4.2. Концепция безпороговой линейной зависимости доза–эффект
- •4.4.3. Зависимость доза–эффект в радиобиологии
- •4.5. Эквидозиметрия ионизирующих излучений
- •4.5.1. Эквивалентная доза, единицы измерения
- •4.5.2. Мощность эквивалентной дозы, единицы измерения
- •4.5.3. Эффективная эквивалентная доза
- •4.6. Современная система дозиметрических величин
- •4.6.1. Вспомогательные дозиметрические величины
- •4.6.2. Нормируемые дозиметрические величины
- •4.6.3. Операционные дозиметрические величины
- •5. Принципы и методы дозиметрии
- •5.1. Понятие о детекторе и основные требования
- •5.2. Схемы связи детекторов с электронными устройствами
- •5.3. Основные характеристики детекторов в дозиметрии
- •5.4. Ионизационный метод в дозиметтрии
- •5.4.1. Ионизационные камеры в дозиметрии
- •5.4.2. Газоразрядные счетчики
- •Раздел 6. Радиационная безопасности
- •6.1. Концептуальные основы радиационной безопасности
- •6.2. Цель и задачи радиационной безопасности
- •6.3. Риск, радиационный риск в ряду рисков
- •6.3.1. Концепция приемлемого риска.
- •6.4. Главные нормативные документы
- •6.4.1. Принципы нормирования в области радиационной безопасности
- •6.4.2. Основные пределы доз.
- •6.4.3. Допустимые уровни
- •6.4.4. Рабочие контрольные уровни
- •6.5. Естественные и искуственные источники радиации
- •6.5.1. Естественные источники излучений
- •6.5.2. Контроль и учет доз облучения
- •6.5.3. Индивидуальный контроль внутреннего облучения
- •6.5.4. Оценка годовых эффективных доз внешнего облучения
- •Введение
- •Раздел 1. Поле ионизирующего излучения, основные понятия
- •1.1. Основные типы полей ионизирующего излучения
- •1.2. Основные единицы измерения поля излучения
- •1.3. Векторные и скалярные характеристики поля излучения
- •1.3.1. Скалярные характеристики поля излучения
- •1.3.2. Векторные характеристики поля излучения
- •1.4. Связь между характеристиками поля излучения и показаниями детектора
- •Раздел 2. Классификация источников ионизирующего излучения
- •2.1. Типы радионуклидных источников
- •2.2. Геометрия узкого и широкого пучка гамма–излучения
- •Раздел 3. Основные закономерности ослабления фотонного излучения
- •3.1. Интенсивность излучения точечного изотропного моноэнергетического источника
- •3.2. Интенсивность излучения точечного источника излучения, (тонкий луч)
- •3.3. Интенсивность в точке
- •3.4. Ослабление потока фотонного излучения
Раздел 4. Дозовые характеристики поля излучения основные дозиметрические величины
Исторически величины, используемые для измерения "количества" ионизирующего излучения (в дальнейшем называемого "излучение"), основываются на большом числе актов ионизации, происшедших в конкретной ситуации, или большом количестве энергии, переданной обычно определенной массе вещества. Такие приближения не позволяют учитывать дискретную природу процесса ионизации, но эмпирически оправдываются тем, что макроскопические величины (подобранные для различных видов излучения) прекрасно согласуются с получаемыми биологическими эффектами.
Будущие исследования вполне могут показать, что было бы лучше использовать другие величины, основанные на статистическом распределении актов в малом объеме вещества, соответствующем размерам, биологических сущностей, таких, как ядро клетки или ее молекулярная ДНК. Но пока Комиссия рекомендует применение макроскопических величии. Они известны как дозиметрические величины и их формальное определение дано Международной комиссией по радиационным единицами измерениям (МКРЕ).
До обсуждения дозиметрических величин необходимо предварительно напомнить часть сведений о биологических эффектах излучения. Процесс ионизации неизбежно вызывает изменения атомов и молекул, по крайней мере временные, и таким образом, может иногда повредить клетки. Если повреждение произошло и полностью не устранилось, оно может воспрепятствовать выживанию или воспроизводству клетки или же дать в результате жизнеспособную, но измененную клетку. Два указанных исхода облучения клетки имеют существенно разное значение для организма в целом.
Потеря даже многих клеток не влияет на большинство органов и тканей тела, но если число потерянных клеток достаточно велико, то может быть нанесен заметный ущерб, отражающийся в утрате функции ткани. Вероятность нанесения такого ущерба будет равна нулю при малых дозах, но выше некоторого уровня дозы (порога) будет круто возрастать до единицы (100%). Выше порога тяжесть ущерба также будет увеличиваться вместе с дозой. По этим причинам, эффекты данного типа, ранее называемые "нестохастическими", теперь называются Комиссией "детерминированными".
Результат будет совершенно другим, если облученная клетка не погибла, а изменилась. Несмотря на существование высокоэффективных защитных механизмов, при репродуцировании измененной, но жизнеспособной соматической клетки после разной продолжительности задержки, называемой латентным периодом, может возникнуть клон клеток, являющийся проявлением злокачественного состояния, т. е. рака. Вероятность возникновения рака в результате облучения обычно возрастает с увеличением дозы, по-видимому, без порога и приблизительно пропорционально дозе, по меньшей мере, при дозах, значительно ниже порогов для детерминированных эффектов. Доза не влияет на тяжесть заболевания раком. Эффекты такого типа называются "стохастическими", что говорит об их "случайной или статической природе". Если повреждение возникает в клетке, функция которой заключается в передаче генетической информации последующим поколениям, то любые возникающие в результате эффекты самых различных типов и степени тяжести отражаются на потомстве облученного человека. Стохастические эффекты такого типа называются "наследуемыми".