
- •12.Общая схема производста строительных материалов.
- •13.Стеновые керамические материалы. Кирпич и камни керамические..
- •14.Облицовочная керамика(керамические6кирпич,плитки и плиты)
- •15.Кровельные керамические изделия. Трубы и санитарно-технические керамические изделия.
- •16.Минеральные вяжущие вещества. Классификация вяжущих веществ.
- •17.Гипсовые вяжущие вещества(виды, свойства, применение).
- •18.Воздушная известь(виды, свойства, применение)
- •19.Портландцемент. Химический, минералогический составы, производство.
- •20.Свойства портландцемента.
- •21.Разновидности портландцемента.
- •22.Глиноземестый цемент. Расширяющиеся цементы.
- •23.Битумные вяжущие вещества. Виды, состав,строение, свойства, применение. Виды битумных вяжущих
- •Природные битумы
- •Нефтяные битумы
- •Остаточные битумы
- •Окисленные битумы
- •Крекинговые битумы
- •Состав и структура битума
- •Свойства битумных вяжущих
- •Вязкость битумов
- •Температура размягчения
- •Применение битумных вяжущих
- •24.Строительные растворы. Классификация.
- •25.Бетон. Общие сведения и классификация.
- •26.Материалы для изготовления тяжелого бетона.
- •Крупный заполнитель.
- •27.Свойства бетонных смесей.Влияние основных факторов на удобоукладываемость.
- •28.Основной закон прочности бетона.
- •29.Основы технологии бетона(приготовление, транспортировка, укладка, уплотнение бетонной смеси)
- •30.Твердение бетона в различных условиях и методы его ускорения. Зимнее бетонирование.
- •31.Прочность, марка, класс бетона.
- •33.Специальные виды бетонов.(высокопрочный, гидротехнический,жаростойкий, защитный)
- •34.Специальные виды бетонов(легкие, асфальтовые, серные, пи-бетоны)
- •35.Железобетонные изделия.Общие сведения.Понятие о железобетоне.
- •36.Монолитный, сборный, сборно-монолитный железобетон(достоинства и недостатки)
- •37.Основные виды железобетонных изделий и конструкций.
- •38.Древесные материалы.Общие сведения.Состав и строение древесины.
- •39.Пороки древесины.
- •40.Свойства древесины.
- •41.Основные древесные породы, применяемые в строительстве.
- •42.Лесоматериалы.Пилометериалы.
- •43.Изделия из древесины.
- •44.Материалы из отходов древесины.
- •45.Защита древесины от гниения и возгорания.
- •47. Основные горные породы, применяемые в строительстве.
- •48.Материалы и изделия из природного камня.
- •49. Коррозия природного камня и меры защиты от нее.
- •50. Общие сведения о металлах и сплавах. Классификация металлов.
- •51. Основные технологии черных металлов (производство чугуна и стали).
- •52.Свойства сталей.
- •53.Углеродистые и легированные стали.
- •54.Термическая обработка стали.
- •55.Стальной прокат. Стальная арматура.
- •56. Соединения стальных конструкций.
- •57. Цветные металлы и сплавы.
- •58. Изделия из цветных металлов и сплавов.
- •59.Коррозия металлов и меты защиты от нее.
1.Классификация строительных материалов:по технологическому признаку и степени готовности.Природные каменные материалы и изделия — получают из горных пород путем их обработки: стеновые блоки и камни, облицовочные плиты, детали архитектурного назначения, бутовый камень для фундаментов, щебень, гравий, песок и др.
Керамические материалы и изделия — получают из глины с добавками путем формования, сушки и обжига: кирпич, керамические блоки и камни, черепица, трубы, изделия из фаянса и фарфора, плитки облицовочные и для настилки полов, керамзит (искусственный гравий для легких бетонов) и др.
Стекло и другие материалы и изделия из минеральных расплавов — оконное и облицовочное стекло, стеклоблоки, стекло профилит (для ограждений), плитки, трубы, изделия из ситаллов и шлакоситаллов, каменное литье.
Неорганические вяжущие вещества — минеральные материалы, преимущественно порошкообразные, образующие при смешивании с водой пластичное тело, со временем приобретающее камневидное состояние: цементы различных видов, известь, гипсовые вяжущие и др.
Бетоны — искусственные каменные материалы, получаемые из смеси вяжущего, воды, мелкого и крупного заполнителей. Бетон со стальной арматурой называют железобетоном, он хорошо сопротивляется не только сжатию, но и изгибу и растяжению.
Строительные растворы — искусственные каменные материалы, состоящие из вяжущего, воды и мелкого заполнителя, которые со временем переходят из тестообразного в камневидное состояние.
Искусственные необжиговые каменные материалы — получают на основе неорганических вяжущих и различных заполнителей: силикатный кирпич, гипсовые и гипсобетонные изделия, асбестоцементные изделия и конструкции, силикатные бетоны.
Органические вяжущие вещества и материалы на их основе — битумные и дегтевые вяжущие, кровельные и гидроизоляционные материалы: рубероид, пергамин, изол, бризол, гидроизол, толь, приклеивающие мастики, асфальтовые бетоны и растворы.
Полимерные материалы и изделия — группа материалов, получаемых на основе синтетических полимеров (термопластических нетермореактнвных смол): линолеумы, релин, синтетические ковровые материалы, плитки, древеснослоистые пластики, стеклопластики, пенопласты, поропласты, сотопласты и др.
Древесные материалы и изделия — получают в результате механической обработки древесины: круглый лес, пиломатериалы, заготовки для различных столярных изделий, паркет, фанера, плинтусы, поручни, дверные и оконные блоки, клееные конструкции.
Металлические материалы — наиболее широко применяемые в строительстве черные металлы (сталь и чугун), стальной прокат (двутавры, швеллеры, уголки), сплавы металлов, особенно алюминиевые.
По степени готовности различают собственно строительные материалы и строительные изделия — готовые изделия и элементы, монтируемые и закрепляемые на месте работы. К строительным материалам относятся древесина, металлы, цемент, бетон, кирпич, песок, строительные растворы для каменных кладок и различных штукатурок, лакокрасочные материалы, природные камни и т. д.
Строительными изделиями являются сборные железобетонные панели и конструкции, оконные и дверные блоки, санитарно-технические изделия и кабины и др. В отличие от изделий строительные материалы перед применением подвергают обработке — смешивают с водой, уплотняют, распиливают, тешут и т. д.
2.Классификация по происхождению и назначению.По происхождению строительные материалы подразделяют на природные и искусственные.
Природные материалы — это древесина, горные породы (природные камни), торф, природные битумы и асфальты и др. Эти материалы получают из природного сырья путем несложной обработки без изменения их первоначального строения и химического состава.
К искусственным материалам относят кирпич, цемент, железобетон, стекло и др. Их получают из природного и искусственного сырья, побочных продуктов промышленности и сельского хозяйства с применением специальных технологий. Искусственные материалы отличаются от исходного сырья как по строению, так и по химическому составу, что обусловлено коренной переработкой его в заводских условиях.
По назначению материалы подразделяют на следующие группы: конструкционные материалы - материалы которые воспринимают и передают на грузки в строительных конструкциях; теплоизоляционные материалы, основное назначение которых — свести до минимума перенос теплоты через строительную конструкцию и тем самым обеспечить необходимый тепловой режим в помещении при минимальных затратах энергии; акустические материалы (звукопоглощающие и звукоизоляционные материалы) - для снижения уровня «шумового загрязнения» помещения; гидроизоляционные и кровельные материалы - для создания водонепроницаемых слоев на кровлях, подземных сооружениях и других конструкциях, которые необходимо защищать от воздействия воды или водяных паров; герметизирующие материалы - для заделки стыков в сборных конструкциях; отделочные материалы - для улучшения декоративных качеств строительных конструкций, а также для защиты конструкционных, теплоизоляционных и других материалов от внешних воздействий;
3.Структура строительных материалов(макро и микроструктура). По методам изучения различают макроструктуру - строение, видимое невооруженным глазом; микроструктуру - строение материала, видимое в микроскоп; ультрамикроструктуру - внутреннее строение вещества, составляющего материала, изучаемого методами электронной микроскопии и рентгеноструктурного анализа. Макроструктура твердых строительных материалов подразделяется на следующие виды: конгломератную, ячеистую, мелкопористую, волокнистую, слоистую и рыхлозернистую. Искусственные конгломераты -это различного вида бетоны, керамические и другие материалы. Ячеистая структура материала отличается наличием макропор. Она свойственна газо- и пенобетонам, поропластам и др. Мелкопористая структура характерна, например, для керамических материалов, получаемых в результате выгорания введенных органических добавок. Волокнистая структура присуща древесине, изделиям из минеральной ваты, стеклопластикам и др. Слоистая структура характерна для рулонных, листовых и плитных материалов. Рыхлозернистая структура свойственна заполнителям для бетонов, различного вида засыпок для теплозвукоизоляции и др. Микроструктура строительных материалов может быть кристаллическая и аморфная, которые зачастую являются лишь различными состояниями одного и того же вещества, например кварц и различные формы кремнезема. Кристаллическая форма всегда более устойчива, аморфная форма вещества, как менее устойчивая, может перейти в кристаллическую. Внутренняя структура материала определяет его механическую прочность, твердость, теплопроводность и другие важные свойства. Свойства строительных материалов многообразны и могут быть подразделены на физические, механические, химические, технологические и др.
4.Составы строительных материалов(химический,вещественный, фазовый, грануламетрический). Состав. Для прогнозирования свойств строительных материалов прежде всего необходимо знать их химический, минеральный состав и структуру. Химический состав строительных материалов позволяет судить о прочности, огнестойкости, биостойкости и других свойствах материалов. Химический состав неорганических вяжущих материалов (гипса, извести, цемента и др.) и естественных каменных материалов, как правило, выражают содержанием (в %) в них оксидов. Основные и кислотные оксиды химически связаны и образуют минералы, которые характеризуют многие свойства материала. Минеральный состав показывает, какие минералы и в каком количестве содержатся в природном каменном материале или минеральном вяжущем. Например, известняк состоит из одного минерала - кальцита, а гранит — из нескольких минералов. Фазовый состав и фазовые переходы воды, находящиейся в порах материала, влияют на его свойства. В материале выделяют твердые вещества, образующие стенки пор, т. е. "каркас", и поры, наполненные воздухом или водой. Изменение содержания воды и ее состояния меняет свойства материала. Так, вода, замерзая в порах материала и увеличиваясь в объеме, вызывает в материале внутренние напряжения, которые могут привести к его разрушению.
хим.состав материала определяют его основные свойства:- физические;- механические;- химические.
по химическому составу: - минеральные;- органические;- металлические;
вещественный состав материалов - характеризует из каких веществ состояния материал
Фазовый состав и фазовые переходы воды, находящиейся в порах материала, влияют на его свойства. В материале выделяют твердые вещества, образующие стенки пор, т. е. "каркас", и поры, наполненные воздухом или водой.
Гранулометрический состав-показывает соотношение зерен различной крупности.
5.Структурные характеристики строительных материалов.Основные структурные характеристики материала, во многом определяющие его технические свойства,— это плотность и пористость; важнейший параметр состояния — влажность. Плотность — физическая величина, определяемая массой единицы объема вещества (или материала). Истинная плотность р (кг/м3) — масса единицы объема материала, когда в расчет берется только объем твердого вещества этого материала Va (м ): p = m/Va. Пористость материала характеризуют не только с количественной стороны, но и с качественной, т. е. по характеру пор: замкнутые и открытые, мелкие (размером в сотые и тысячные доли миллиметра) и крупные (от десятых долей миллиметра до 2…5 мм). Характер пор важен, например, при оценке способности материала поглощать воду. Так, полистирольный пенопласт, с пористостью до 98%, имеет замкнутые поры и практически не поглощает воду. В то же время керамический кирпич, имеющий пористость в три раза меньшую (около 30%), из-за открытого характера пор (большинство пор представляет собой сообщающиеся капилляры) активно поглощает воду.
Пористость является основной структурной характеристикой, определяющей такие свойства материала, как водопогло-щение, теплопроводность, акустические свойства, морозостойкость, прочность и др.
6.Гидрофизические свойства строительных материалов.Гидрофизические свойства строительных материалов --Гигроскопичность - свойство пористого материала поглощать водяной пар из воздуха. Степень гигроскопичности напрямую зависит от величины пор в материале, от его структуры, температуры относительной влажности воздуха. Если материалы обладают одинаковой пористостью, но у одного поры мельче, чем у другого, то он обладает большей гигроскопичностью. Гидрофильными называют материалы, активно притягивающие молекулы воды. К ним относится глина, минеральные вяжущие - цемент и гипс. Гидрофобными называются материалы, отталкивающие воду. Это битумы, полимеры, стекло. Влажность это количество воды, содержащийся в материале в естественном состоянии. Бывает относительная и абсолютная. W отн =( m2- m)/ m2* 100% W абс=( m2- m)/ m* 100% Так же различают: -капилярная( заполняет капилляры, субкапиляры и мелкие поры и удерживается в них капиллярными силами -адсорбционной( вл., поглощаемая из воздуха поверхностью частиц строительного материала.кол-во ее зависит от влажности воздуха.) -гидратная ( входит в состав кристаллов) -вода затворения - количество ее, которое входит в технические соображения, в состав сырьевых, бетонных и растворных смесей. -- Водопоглощение - свойство материала впитывать и удерживать воду. В m=( m1- m)/ m1* 100%- водопоглощение по массе B0=( m1- m)/ V1* 100%- водопоглощение по объему Соотношение между водопоглощением по массе и объему равно плотности материала в сухом состоянии B0/Вm=р0 Отношение предела прочности при сжатии материала, насыщенного водой R нас, к пределу прочности при сжатии материала в сухом состоянии R сух называется коэффициентом размягчения. Кразм= Rнас/Rсух -- Водостойкость - способность материала сопротивляться разрушительным действиям влаги. -- Водопроницаемость – способность материала пропускать воду под давлением. Степень водопроницаемости зависит от плотности и строения материала. --Морозостойкость - способность материала в насыщенном водой состоянии выдержать многократное попеременное замораживание и оттаивание без значительного понижения прочности. В зависимости от числа циклов попеременного замораживания, которые выдержал материал, устанавливается его марка по морозостойкости. Благодаря высокой плотности и низкому водопоглощению кровельные материалы имеют высокую морозостойкость.
7.Теплофизические свойства строительных материалов.Теплопроводность - способность материала проводить через свою толщу тепловой поток, возникающий под влиянием разности температур на поверхностях, ограничивающих материал. Это свойство оценивается кол-вом тепла, которое проходит через стенку толщиной 1 м и площадью 1 м2 при перепаде температур на противоположных поверхностях в 1°С в течение 1 часа. Характеризуется коэффициентом теплопроводности λ (лямбда). Λt=λ0(1+β*t)Λt- коэф. теплопров. при температуре t , Вт/(м*К) λ0 - коэф. теплопров. при температуре 0оС , Вт/(м*К) β – температурный коэффициент t – температура матрериала Теплопроводность так же характеризуется термическим сопротивлением R=δ(дельта)/ λ -- Теплоемкость - способность материала накапливать теплоту при нагревании и отдавать при охлаждении. Характеризуется удельной теплоемкостью С. С = Q/m(T2-T1) Q– кол-во теплоты, затраченной на нагревание. -- Огнестойкость характеризует способность строительных материалов выдерживать без разрушения действие высоких температур в течение сравнительно короткого промежутка времени (пожара). В зависимости от степени огнестойкости строительные материалы разделяют на несгораемые, трудносгораемые и сгораемые. Несгораемые материалы в условиях высоких температур не подвержены воспламенению, тлению или обугливанию. Трудносгораемые материалы под воздействием высоких температур тлеют и обугливаются, но при удалении огня процессы горения, тления или обугливания полностью прекращаются. Сгораемые материалы воспламеняются и горят или тлеют под воздействием огня или высокой температуры, причем горение или тление продолжается также после удаления источника огня. Среди них — древесина, войлок, битумы, смолы и др. -- Огнеупорность – способность материала противостоять длительному воздействию высокой температуры без деформации и расплавления. Если источник высокой температуры (выше 1580°С) действует на материал в течение длительного периода времени (соприкосновение с печами, трубами, нагревательными котлами и т. п.), а материал сохраняет необходимые технические свойства и не размягчается, то его относят к огнеупорным. Тугоплавкие – температура огнеупорности 1350-1580 оС Легкоплавкие – температура огнеупорности менее 1350 оC 8.Акустические свойства. Химические свойства строительных материалов.Акустические свойства материалов связаны с взаимодействием материала и звука; прежде всего, это — звукопроводность и звукопоглощение. Звукопроводность — свойство материала проводить через свою толщу звук; она зависит от строения и массы материала. Тяжелые материалы (кирпич), а также пористые и волокнистые плохо проводят звук. Звукопроницаемость — отрицательное свойство, так как в большинстве случаев к строительным материалам предъявляются требования изоляции помещений от внешних шумов. Звукоизоляция — ослабление звука при его проникновении через ограждающие конструкции — это свойство материала, обратное звукопроницаемости. Звукопоглощение — свойство материала поглощать и отражать падающий на него звук. Оно зависит от пористости материала, его толщины, состояния поверхности, а также от частоты звукового тона, измеряемого количеством колебаний в секунду. Звукопоглощение За единицу звукопоглощения принимают поглощение звука 1 м2 открытого окна; при открытом окне звук поглощается полностью. Звукопоглощение всех строительных материалов меньше единицы. Звукопоглощение материала оценивают коэффициентом звукопоглощения, т. е. отношением энергии, поглощенной материалом, к общему количеству падающей энергии в единицу времени. Звукопоглощение зависит от характера поверхности материала. Материалы с гладкой поверхностью хорошо отражают падающий на них звук, поэтому в помещениях с гладкими стенами создается постоянный шум. Материалы с развитой открытой пористостью хорошо поглощают и не отражают падающий на них звук. Известно, что ковры, дорожки, мягкая мебель заглушают звук. Специальная акустическая штукатурка с мелкими открытыми порами хорошо поглощает и заглушает звук. В принципе те строительные материалы, которые плохо пропускают через себя звук, хорошо его поглощают и не отражают, являются акустическими материалами. Уменьшение шума в результате использования таких материалов сохраняет здоровье людей, создает для них определенные условия и способствует повышению производительности труда. Радиационная стойкость—свойство материала сохранять свою структуру и физико-механические характеристики после воздействия ионизирующих излучений. Для защиты от радиоактивных излучений применяют особо тяжелые (р = 3000...5000 кг/м3) и гидратные бетоны, имеющие повышенное содержание химически связанной воды, создающей хорошую защиту от нейтронного потока.
Химические свойства выражают степень активности материала к химическому взаимодействию с реагентами и способность сохранять постоянными состав и структуру материала в условиях инертной окружающей среды. Некоторые материалы склонны к самопроизвольным внутренним химическим изменениям в обычной среде. Ряд материалов проявляет активность при взаимодействии с кислотами, водой, щелочами, растворами, агрессивными газами и т. д. Химические превращения протекают также во время технологических процессов производства и применения материалов.
Химическая стойкость — свойство материалов противостоять разрушающему действию химических реагентов: кислот, щелочей, растворенных в воде солей и газов. Она зависит от состава и структуры материалов. Так, мрамор, известняки, цементный камень в строительных растворах и бетонах, в химическом составе которых преобладает оксид кальция (СаО), легко разрушаются кислотами, но стойки к действию щелочей. Силикатные материалы, содержащие в основном диоксид кремния (SiO2), стойки к действию кислот, но взаимодействуют при повышенной и нормальной температуре со щелочами.
Изменение структуры материала под влиянием внешней агрессивной среды называют коррозией.
Коррозионная стойкость — свойство материала сопротивляться коррозионному воздействию среды. Распространенной и благоприятной средой для развития химической коррозии является вода (пресная и морская). Агрессивность воды зависит от степени ее минерализации, жесткости, щелочности или кислотности. Химически агрессивной средой является также воздух, содержащий пары оксидов азота, хлора, сероводорода и т. д.
Металлы и сплавы подвергаются коррозии под действием сред, не проводящих электрический ток, например некоторых газов при высокой температуре нефтепродуктов, содержащих органические кислоты. Такую коррозию металлов называют химической. Чаще металлы, в том числе стальная арматура железобетонных конструкций, корродируют в средах, проводящих электрический ток, — водных растворах солей, кислот, щелочей. В этом случае возникает электрохимическая коррозия.
Особым видом коррозии является биокоррозия — разрушение материалов под действием живых организмов — грибов, насекомых, растений, бактерий и микроорганизмов.
Растворимость — способность материала растворяться в воде, масле, бензине, скипидаре и других жидкостях-растворителях. Растворимость может быть и положительным, и отрицательным свойством. Например, если в процессе эксплуатации синтетический облицовочный материал разрушается под действием растворителя, растворимость материалов играет отрицательную роль.
При приготовлении холодных битумных мастик используется способность битумов растворяться в бензине. Это дает возможность наносить материал на поверхность тонким слоем, и поэтому растворимость в данном случае является положительным свойством.
Кислото- и щелочностойкость неорганических материалов оценивается модулем основности:
M = (CaO+MgO+Na2O+K2O) / (SiO2+Al2O3).
При малом модуле основности, когда в материале содержится повышенное количество кремнезема и глинозема, он более стоек в кислых средах. При высоком модуле основности с преобладанием основных оксидов они более щелочестойки.
Высокую кислотостойкость имеют керамические материалы — плитки, трубы, кирпич. Цементные бетоны, материалы из карбонатных горных пород активно разрушаются кислотами.
Адгезия — свойство одного материала прилипать к поверхности другого. Она характеризуется прочностью сцепления между материалами. Зависит от их природы, состояния поверхностей. Это свойство имеет важное значение при изготовлении композиционных материалов, бетонов, клееных конструкций.
9.Механические свойства строительных материалов. Прочностью называется способность материала противостоять разрушению под воздействием внешних сил, вызывающих в нем внутренние напряжения. Прочность материала характеризуется пределом прочности при трех видах воздействия на него — сжатии, изгибе и растяжении. Сжатие Rсж=Рр/S Рр – максимальная нагрузка S – площадь поперечного сечения Изгиб Rизг=3Ppl/(2bh2) l– расстояние между опорами b– ширина поперечного сечения образца h – высота поперечного сечения образца Растяжение Rр=Рр/S Одной из характеристик материала является коэффициент конструктивного качества к.к.к к.к.к = R/α α– относительная плотность материала, равная отношению истинной плотности материала к плотности воды. -- Упругость это способность материала после деформирования под воздействием каких-либо нагрузок принимать после снятия их первоначальную форму и размеры. К упругим материалам относят резину, сталь, древесину. --Твердость способность материала сопротивляться проникновению в него другого, более твердого тела. Это свойство материалов важно при устройстве полов и дорожных покрытий. Проверяют вдавливанием стального шарика. НВ=P/S P– нагрузка на шарик S– площадь поверхности отпечатка. -- Истираемость характеризуется величиной потери первоначальной массы, отнесенной к 1 м2 площади истирания. И = (m1-m2)/S m1 – масса образца до истирания m2 – масса образца после истирания S– площадь поверхности истирания. --- Хрупкость свойство материала мгновенно разрушаться под действием внешних сил без заметной пластичной деформации. Хрупкие материалы: кирпич, природные камни, бетон, стекло и т. д. --Пластичность свойство материала изменять под нагрузкой форму и размеры без образования разрывов и трещин и сохранять изменившиеся форму и размеры после удаления нагрузки. Это свойство противоположно упругости. К пластичным материалам относят битум, глиняное тесто и др. -- Сопротивление удару способность материала противостоять разрушению под действием ударных нагрузок. Плохо сопротивляются ударным нагрузкам хрупкие материалы. Характеризуется кол-вом работы, затраченной на разрушение стандартного образца. Rуд=A/V0 V0 - объем образца
10. Керемические материалы.Классификация керамических материалов. Керамическими называют искусственные каменные материалы, изготовляемые из минерального сырья путем формования и последующего обжига при высоких температурах
Строительные керамические материалы и изделия в зависимости от основного назначения делятся на группы (СНиП I-B.9-62):
а) стеновые материалы - кирпич глиняный обыкновенный, кирпич глиняный пустотелый и пористо-пустотелый пластического прессования, кирпич глиняный пустотелый полусухого прессования, камни керамические пустотелые пластического прессования, кирпич строительный легкий. В последнее время заводы стали вырабатывать крупноразмерные керамические изделия - блоки, панели, которые также относятся к этой группе;
б) кирпич и камни строительные глиняные специального назначения - кирпич глиняный лекальный, камни для канализационных сооружений (подземных коллекторов), кирпич для дорожных одежд (мостовой клинкер). Кирпич для дорожных одежд в нашей стране не получил распространения и имеет крайне незначительное применение;
в) изделия керамические пустотелые для перекрытий - камни для часторебристых покрытий (сборных или монолитных), камни для армокерамических балок, камни для накатов, а также панели перекрытий и покрытий, изготовленные из отдельных керамических камней;
г) изделия керамические для облицовки фасадов зданий - кирпич и камни керамические лицевые, ковровая керамика, плитки керамические малогабаритные, плиты керамические фасадные, подоконные сливы;
д) изделия керамические для внутренней облицовки - плитки для облицовки стен, детали встроенные, плитки для полов;
е) кровельные материалы - черепица глиняная;
ж) трубы керамические канализационные и дренажные;
з) изделия керамические кислотоупорные - футеровочные (кирпич кислотоупорный нормальный, плитки кислотоупорные и др.), трубы кислотоупорные и фасонные части к ним.
11.Сырье для производства керамических материалов.Основным сырьем для производства керамических изделий являются различные глины, а также шамот, кварцевый песок, шлак и органические добавки (древесные опилки, угольная и торфяная пыль), выгорающие при обжиге.
1. ГЛИНЫ
Глиной называются землистые минеральные массы, или землистые обломочные горные породы, способные с водой образовывать пластичное тесто, по высыхании сохраняющее приданную ему форму, а после обжига получающее твердость камня
Глины образовались в результате выветривания изверженных по-левошпатных горных пород. Процесс выветривания горной породы состоит из механического разрушения и химического разложения. Механическое разрушение происходит в результате воздействия переменной температуры, воды и ветра, химическое разложение — в результате воздействия различных реагентов, например воды и углекислоты на (полевой шпат, когда образуется минерал каолинит А12О3 • 2 БЮг • 2 НгО (см. главу II).
Наиболее чистые глины, состоящие преимущественно из каолинита, называют каолинами. Обычные глины отличаются от каолинов химическим и минералогическим составом, так как помимо каолинита они содержат кварц, слюду, полевые шпаты, кальцит, магнезит и др.
Свойства глины, не расплавляясь противостоять воздействию высоких температур, называют огнеупорностью!. Определяют ее керамическими пироскопамиj (конусами Зегера),] имеющими форму трехгранной пирамиды высотой 30 мм и стороной у основания 8 мм, а у вершины 2 мм и характеризуют той температурой, при которой конус размягчается и оседает, касаясь своей вершиной подставки, на которой он введен в печь. Для определения огнеупорности глины из нее изготавливают образец,' подобный конусу Зегера, устанавливают его вместе с. несколькими конусами, имеющими разные температуры огнеупорности, и конусы нагревают. Огнеупорность глины соответствует огнеупорности того конуса, который коснулся своей вершиной подставки одновременно с испытуемым образцом. Разность между температурой начала спекания и огнеупорностью глины называется интервалом спекания, он находится в пределах 100—150° у чистых каолинитовых глин и 25—50° у глин, используемых для обыкновенного глиняного кирпича
2. ДОБАВКИ К ГЛИНАМ
Для придания различных свойств как глинам, так и получаемым из них керамическим изделиям в глину вводят различные добавки. Кратко рассмотрим добавки, имеющие наиболее частое применение.
Отощающие добавки
В высокопластичные глины, требующие для затворения большого количества воды (до 28%) и поэтому дающие большую линейную усадку при сушке и обжиге (до 15%), необходимо вводить отощающие добавки, т. е. непластичные вещества. При этом значительно уменьшается количество воды, необходимой для затворения глиняного теста, что сокращает размер усадки (до 2—6%).
VB качестве отощающих добавок чаще всего применяют вещества неорганического происхождения — кварцевый песок, шамот (обожженная и измельченная глина) и бой изделий, молотый шлак и золу. Эти добавки не только уменьшают усадку изделий, но и улучшают формовочные свойства массы, облегчают технологический процесс производства и устраняют брак. В ряде случаев они улучшают физические свойства изделий, например термостойкость и теплопроводность.
Выгорающие добавки
12.Общая схема производста строительных материалов.
Несмотря на обширный ассортимент керамических изделий, разнообразие их форм, физико-механических свойств и видов сырьевого материала, основные этапы производства керамических изделий являются общими и состоят из следующих операций: добычи сырьевых материалов; подготовки сырьевой массы; формования изделий (сырца); сушки сырца; обжига изделий; обработки изделий (обрезки, глазурования и пр.) и упаковки. Заводы по производству керамических материалов, как правило, строят вблизи месторождения глины, и карьер является составной частью завода. Разработку (добычу) сырья осуществляют на карьерах открытым способом — экскаваторами. Транспортировку сырья от карьера к заводу производят автосамосвалами, вагонетками или транспортерами при небольшой удаленности карьера от цеха формовки. Подготовка сырьевых материалов состоит из разрушения природной структуры глины, удаления или измельчения крупных включений, смешения глины с добавками и увлажнения до получения удобоформуемой глиняной массы.
13.Стеновые керамические материалы. Кирпич и камни керамические..
Облицовочные керамические материалы применяют для наружной и внутренней отделки зданий различного назначения.
При наружной отделке отделывают фасады зданий. Керамические изделия для облицовки фасадов подразделяют на кирпич и камни лицевые, мелкие плитки, крупногабаритные плиты, ковровую керамику и фасонные детали для устройства карнизов, сливов, поясков, сандриков, тяг и т.д. Фасадные керамические изделия укладывают одновременно с кладкой стен.
Кирпич и камни керамические лицевые. Они отличаются точностью геометрических размеров и однородностью цвета. Для изготовления этих изделий применяют высококачественные глины. При подготовке сырьевой смеси к глинам добавляют отощающие добавки, а иногда специальные красители. Лицевой кирпич и камни изготовляют сплошными и пустотелыми, лицевую поверхность выполняют гладкой или рельефной. Для придания необходимого цвета их лицевые поверхности иногда покрывают глазурью или ангобом.
Кирпич и камни керамические лицевые подразделяют на рядовые и профильные. Рядовые изделия применяют для облицовки гладких поверхностей стен, а профильные - для кладки карнизов, сандриков, тяг, поясков и др. Облицовочный кирпич имеет те же размеры, что и керамический, т.е. 250х120х65 мм, лицевые камни - 250х120х138 мм. Эти изделия выпускают марок 75, 100, 125, 150, 200, 250, 300, водопоглощением 6 %, морозостойкостью не менее 25.
Плиты и плитки фасадные. Плиты фасадные керамические применяют так же, как и лицевые кирпичи и камни, для повышения долговечности наружных стен и придания им красивого внешнего вида.
Фасадные малогабаритные плиты. Наряду с крупногабаритными облицовочными керамическими плитами выпускают легкие облицовочные цветные и глазурованные плитки размерами от 46 х 21 до 296 х 102 мм, толщиной 4 ... 10 мм. Их применяют в крупнопанельном домостроении для отделки наружных поверхностей стеновых панелей, а также для облицовки цоколей различного назначения.
Ковровая керамика. Ковровая керамика представляет собой мелкоразмерные плитки различного цвета, глазурованные и неглазурованные. Эти плитки непосредственно на заводах набирают в ковры и наклеивают на бумажную основу. Для лучшего сцепления с раствором или бетоном тыльную сторону плиток делают рифленой. Применяют для облицовки крупных панелей и блоков в блочном и панельном домостроении, а также для облицовки стен вестибюлей и лестничных клеток зданий различного назначения.
Керамические изделия для внутренней отделки зданий. В зависимости от применяемого сырья их делят на майоликовые и фаянсовые. Фаянсовые плитки изготовляют из тугоплавких глин с добавкой кварцевого песка и плавней, веществ, понижающих температуру плавления, полевого шпата и известняка или мела. Они имеют белый или слабоокрашенный цвет. Лицевую поверхность их покрывают белой или цветной глазурью. Тыльную сторону плиток для лучшего сцепления с раствором делают рифленой. Майоликовые облицовочные плитки для внутренней облицовки изготовляют из легкоплавких глин с добавкой 20 % мела.
Плитки керамические для полов широко применяют в гражданском строительстве для устройства полов в помещениях с влажным режимом эксплуатации и повышенной интенсивностью движения (в санитарных узлах; кухнях, вестибюлях, коридорах, на предприятиях химической промышленности и т.д.). Полы из керамических плиток долговечны, гигиеничны, хорошо сопротивляются истиранию, легко моются. Отрицательным качеством этих полов является их высокая теплопроводность.