
- •Оглавление
- •10.1 Общие сведения…………………………………………………………....69
- •12.4.6 Проверочный и проектировочный расчет прямозубой
- •Введение
- •1 Машины и механизмы, их структура и классификация
- •1.1 Звенья и кинематические пары механизмов
- •1.2 Кинематические цепи. Степень подвижности механизмов
- •1.3 Классификация механизмов
- •2 Основы расчетов деталей механизмов и машин на прочность
- •2.1 Деформации и напряжения. Метод сечений
- •2.2 Простейшие типы деформации стержней
- •2.3 Допущения, принимаемые при расчетах на прочность
- •3 Растяжение-сжатие стержней. Свойства материалов
- •3.1 Определение деформаций и напряжений при растяжении – сжатии
- •3.3 Твердость материалов
- •4 Сдвиг и кручение
- •4.1. Напряжения и деформации при сдвиге
- •4.2 Статические моменты сечения. Центр масс сечения
- •4.3 Моменты инерции сечений
- •4.4 Понятие о крутящем моменте
- •5 Изгиб прямолинейного стержня
- •5.1 Понятия о деформации изгиба
- •5.2 Определение нормальных напряжений при изгибе
- •5.3 Определение деформаций при изгибе
- •6 Сложные сопротивления. Местные напряжения
- •6. 1 Понятие о теориях прочности
- •6.2 Изгиб с кручением стержней круглого поперечного сечения
- •6.3 Концентрация напряжений
- •6.4 Контактные напряжения
- •7 Устойчивость сжатых стержней
- •7.1 Устойчивость равновесия сжатого стержня
- •7.2 Определение критической силы. Задача Эйлера
- •8 Прочность при циклически изменяющихся напряжениях
- •8.1 Понятие об усталости материалов
- •8.4 Факторы, влияющие на предел выносливости
- •9 Основы триботехники
- •9.1 Общие сведения
- •9.2 Трение и изнашивание
- •10 Основные принципы и правила конструирования
- •10.1 Общие сведения
- •10.2 Стандартизация и унификация
- •10.3 Прочность и жесткость
- •10.4 Точность взаимного положения деталей
- •10.5 Другие методы и принципы конструирования
- •11 Конструкционные и смазочные материалы
- •11.1 Требования к конструкционным материалам
- •11.2 Черные металлы
- •11.2.1 Чугуны
- •1.2.2 Стали
- •11. 3.1 Медь и ее сплавы
- •11. 3.2 Алюминий и его сплавы
- •11.3.3 Сплавы титана и магния, баббиты
- •11.4 Пластмассы
- •11. 5 Смазочные материалы
- •12 Механические передачи
- •12.1 Характеристики механических передач
- •12.2 Фрикционные механизмы
- •12.2.1 Общие сведения
- •12.2.2 Кинематика фрикционных механизмов
- •12.2.3 Расчет фрикционных передач
- •12.3 Ременные передачи
- •12.3.1 Кинематика, геометрия и силы в ременных передачах
- •12.3.2 Порядок расчета
- •12.4 Зубчатые механизмы. Прямозубые цилиндрические передачи
- •12.4.1 Параметры цилиндрических прямозубых колес
- •12.4.2 Конструкции и материалы зубчатых колес
- •12.4.3 Виды повреждений зубьев
- •12.5 Особенности цилиндрических косозубых передач
- •12.5.2 Расчет косозубой цилиндрической передачи на прочность
- •12.6 Конические зубчатые передачи
- •12.6.1 Силы, действующие в зацеплении конической передачи
- •12.6.2 Расчет конической передачи на прочность
- •12.7 Передачи с круговинтовым зацеплением Новикова
- •12.8 Планетарные и волновые зубчатые передачи
- •12.8.1 Планетарные механизмы
- •12.8.2 Волновые зубчатые передачи
- •12.9 Червячные передачи
- •12.10 Механизмы винт-гайка
- •12.11 Цепные передачи
- •12.11.1 Конструкции приводных цепей
- •12.11.2 Расчеты цепных передач
- •12.12 Рычажные передачи
- •13 Валы и оси
- •13.1 Конструкции валов и осей
- •13.2 Расчеты валов и осей
- •14 Опоры осей и валов
- •14.1 Требования, предъявляемые к опорам
- •14.2 Подшипники скольжения
- •14.3 Подшипники качения
- •15 Муфты
- •15.1 Назначение и классификация муфт
- •15.2 Постоянные муфты
- •15.3 Управляемые муфты
- •15.4 Самоуправляемые муфты
- •16 Корпуса
- •17 Упругие элементы
- •18 Соединения деталей
- •19 Динамика механизмов
15.4 Самоуправляемые муфты
Самоуправляемые муфты служат для автоматического разъединения (соединения) валов в тех случаях, когда значение передаваемого валом момента или скорости превышает значение, заданное условиями эксплуатации. Рассмотренные фрикционные сцепные муфты (см. рис. 15.7) могут быть использованы в качестве самоуправляемых по величине передаваемого момента. В этих муфтах при перегрузках будет происходить проскальзывание полумуфт с автоматическим разъединением валов.
Центробежная
муфта прямого действия (рис.
15.9, а)
применяется
для автоматического сцепления валов,
а центробежная
муфта обратного
действия
(рис.
15.9, б)
— для
их автоматического расцепления.
Полумуфты 1
и
2 соединяются с помощью колодок 3, которые
могут
поступательно перемещаться в полумуфте
1.В
муфтах прямого действия колодки
удерживаются силами упругости
Fnр
пружин
растяжения в полумуфте 1.
При
вращении вала с
полумуфтой 1
со
скоростью со на колодки действуют
центробежные силы
инерции Fn
= тr
2,
где
т
—
масса колодки, а r
— расстояние от центра
масс колодки до оси вращения полумуфты
1.
При
увеличении скорости
вращения сила инерции преодолевает
силу упругости пружины
и прижимает колодку к полумуфте 2
с
силой N
= Fn
–FПР
создающей
трение между полумуфтами. При моменте
трения FTР
=FTР
r
=
(Fn
-
Fnp
)rf,
превышающем момент сопротивления,
происходит передача
вращательного движения от полумуфты 1
к полумуфте
2 и
соединение валов (f—
коэффициент
трения скольжения).
В муфтах обратного действия (рис. 15.9, б) расцепление валов происходит при скорости, когда сила инерции колодки (Fn) становится равной силе упругости пружины (Fn) и отжимает колодку от полумуфты 2.
Обгонная муфта (рис. 15.10) передает движение только в одном направлении. Она состоит из ведущей 1 и ведомой 4 полумуфт и шариков (роликов) 3. Принцип работы обгонных муфт состоит в следующем. Полумуфта 1 жестко закреплена на ведущем валу. При его вращении по ходу часовой стрелки шарики 3 под действием сил пружин 2 и сил инерции вкатываются в узкую часть клинового зазора полумуфт и, заклиниваясь, передают вращательный момент от полумуфты 1 к полумуфте 4, свободно сидящей на валу и являющейся зубчатым колесом.
Рис. 15.9
Рис. 15.10
При вращении полумуфты 1против хода часовой стрелки шарики выходят в широкую часть клиновых зазоров и полумуфты разъединяются, т.е. вращение от вала к зубчатому колесу не передается.
Обгонные муфты нормализованы. Они обеспечивают бесшумную работу и обладают высокой нагрузочной способностью.
16 Корпуса
По функциональному назначению корпуса делят на несущие и корпуса-кожухи. Несущие корпуса служат для установки подвижных и неподвижных узлов и деталей механизма и должны обеспечивать их требуемое взаимное расположение. К таким узлам можно отнести опоры скольжения и качения, двигатели, муфты, ручки и кнопки управления, контактные устройства, шкалы и т.д. Корпуса-кожухи служат не только для размещения и крепления в них узлов и деталей механизмов, но и для защиты их от механических повреждений и попадания пыли и влаги; они все в какой-то степени герметизированы. От конструкции корпуса зависят точность и надежность работы механизма, его размеры, масса и внешний вид, удобство и безопасность эксплуатации.
По конструктивным признакам несущие корпуса классифицируются на цельные, разъемные, сборные, одно- и двухплатные (рис. 16.1).
Цельные корпуса (рис. 16.1, а) имеют форму открытых коробок. Они обладают высокой прочностью и жесткостью, хорошо защищают детали и узлы от внешних воздействий. Их конструкция всегда предусматривает монтажные отверстия, которые закрываются крышками (рис. 16.2, а). Недостатками конструкции часто являются ограниченные возможности предварительной сборки деталей механизма в узлы до их установки в корпус, сложность и неудобство сборки и разборки узлов из-за ограничения внутри корпусного пространства. Цельные корпуса изготавливают с помощью различных технологий: литьем, штамповкой, прессованием, сваркой, механической обработкой.
Разъемные корпуса имеют форму закрытых коробок и состоят обычно из двух основных частей, плоскость разъема которых или совпадает с плоскостью расположения осей валов (рис. 16.1, г), или располагается перпендикулярно к осям валов (рис. 16.1, б, в). Эти корпуса обладают достаточными прочностью и жесткостью, защищают детали от внешних воздействий и допускают поузловую сборку механизма. Центрирование основных (двух) частей корпуса осуществляется с помощью штифтов (рис. 16.1, в , г) или по цилиндрической соосной поверхности (рис. 16.1,б). Чтобы обеспечить точность расположения
валов, отверстия под подшипники обрабатываются одновременно для собранных совместно основных частей корпуса.
Рис. 16.1
Сборные корпуса (рис. 16.1, д) имеют коробчатую форму и состоят из пластин, угольников и крышек, соединенных винтами 1, 2 (рис. 16.2, б) и штифтами. Их изготавливают из металлопроката (полос, листов, уголков) путем механической обработки на станках. Они имеют достаточные прочность и жесткость, защищают детали и узлы механизма от внешних воздействий, но ограничивают, как и цельные корпуса, возможности узловой сборки. Их применяют в единичном и опытном производстве (рис. 16.2, б).
Рис. 16.2
Одноплатные корпуса (рис. 16.1, е) имеют форму плоской пластины или пластины с ребрами жесткости и необходимыми приливами. Возможны две схемы расположения валов по отношению к пластине. Чаще применяются конструкции корпусов, оси валов механизма которых расположены перпендикулярно к корпусу.
Одноплатные корпуса обладают достаточными прочностью и жесткостью, допускают узловую сборку, использование большого числа унифицированных деталей и узлов и обеспечивают удобную регулировку механизма. Их используют как в единичном, так и в серийном производстве. Для защиты от внешних воздействий одноплатных корпусов применяют крышки-кожухи.
Двухплатные корпуса (см. рис. 16.1, ж) включают две параллельные пластины (платы), соединенные распорными колонками и винтами. Двухплатные корпуса имеют невысокие прочность и жесткость; от внешних воздействий корпус защищается кожухом. Детали и узлы механизма располагаются между платами. Двухплатные корпуса применяют в массовом, серийном и единичном производствах, они технологичны и удобны в сборке. Платы изготавливают из металлопроката, литьем, прессованием, штамповкой с последующей механической обработкой.
В зависимости от технологии изготовления несущие корпуса делят на литые, прессованные, штампованные, сварные и механически обработанные.
Литые корпуса изготавливают из алюминиевых сплавов АЛ4 и АЛ9, магниевых Мг4 и Мг6, иногда из чугунов СЧ12 и СЧ15, цинковых и медных сплавов, пластмасс. Корпуса должны иметь простую конфигурацию, ограниченную плоскостями и поверхностями вращения без поднутрений. Необходимо предусматривать закругления всех острых углов. Для уменьшения механической обработки литых деталей обрабатываемые поверхности (под крышки, люки, стаканы) рекомендуется располагать в одной плоскости и делать выступающими на 1...2 мм над необрабатываемыми. Толщину стенок корпуса необходимо выбирать в пределах 2...4 мм, при этом внутренние стенки могут быть на 20 % тоньше внешних. Для размещения подшипников, закрепления двигателей предусматривают местные утолщения — приливы. В разъемных корпусах растачивание отверстий под подшипники, обработка торцовых поверхностей производятся после сборки двух частей корпуса.
Прессованные корпуса изготавливаются из пластмасс: композиционных, фенопласта К18-2, аминопласта. Они имеют малые стоимость и массу, высокие электроизоляционные, демпфирующие и антикоррозионные свойства. Желательна простая форма корпуса, не препятствующая заполнению пресс-формы и легко из нее вынимаемая. Толщина стенок — 3...5 мм, обязательны плавные переходы от больших сечений к меньшим, радиусы закруглений, уклоны вертикальных стенок (см. рис. 16.2, а).
Штампованные корпуса выполняют с помощью гибки, вытяжки и вырубки из полосовых тонколистовых заготовок. В качестве материалов применяют малоуглеродистые пластичные стали 08, 10, 15, деформируемые сплавы алюминия Д1 и Д16. Рекомендуется толщину стенок принимать равной 1...2 мм. Жесткость увеличивают штамповкой ребер, рифлений различных форм, отбортовкой. Штампованные детали корпуса соединяют винтами, сваркой, пайкой.
Литые, прессованные и штампованные корпуса экономически выгодно использовать при серийном и массовом производстве, когда стоимость оснастки (штампы, пресс-формы, литейные формы) распределяется на значительное количество изготавливаемых изделий. Эти технологии позволяют обеспечить высокие точность, производительность, повторяемость, малый расход материалов.
Сварные корпуса изготавливают при мелкосерийном и единичном производствах. Их выполняют из металлопроката (листов, полос, уголков, профилей). Корпус после сварки подвергают отжигу для снятия локальных (в местах сварки) внутренних напряжений. Рекомендуется производить механическую обработку плоскостей и отверстий только после отжига. Толщина стенок определяется типом сварки и усилиями, возникающими при обработке корпуса после сварки. Жесткость корпуса можно увеличить ребрами, располагаемыми снаружи у мест крепления подшипников.
Механически обработанные корпуса, имеющие форму тел вращения (см. рис. 16.1, б), призмы, могут изготавливаться обработкой исходной заготовки.
По степени защиты от воздействия окружающей среды корпуса-кожухи классифицируют как обыкновенные защитные, пыленепроницаемые, брызгонепроницаемые и взрывобезопасные. Важен выбор степени герметичности: полная герметичность корпусов
усложняет и удорожает конструкцию. Основные элементы герметичных корпусов, которые необходимо уплотнять, — крышки, смотровые стекла, электрические вводы и подвижные соединения. Для всех выходящих наружу подвижных деталей в крышках устанавливают уплотнения. Крышки герметичных корпусов уплотняют резиновыми шнурами круглого, квадратного или прямоугольного сечения (рис. 16.3), резиновыми прокладками. Смотровые стекла уплотняют с помощью резиновых прокладок (рис. 16.4, а, б) или герметиками (рис. 16.4, в).
Рис. 16.3
Рис. 16.4
Выбор типа и формы корпуса зависит от назначения, места установки, условий эксплуатации, серийности, кинематической и компоновочной схем механизма, технологических возможностей производства, эстетики, удобства сборки и ремонта, способов крепления, требований по габаритам, массе и креплению механизма.