
- •Оглавление
- •10.1 Общие сведения…………………………………………………………....69
- •12.4.6 Проверочный и проектировочный расчет прямозубой
- •Введение
- •1 Машины и механизмы, их структура и классификация
- •1.1 Звенья и кинематические пары механизмов
- •1.2 Кинематические цепи. Степень подвижности механизмов
- •1.3 Классификация механизмов
- •2 Основы расчетов деталей механизмов и машин на прочность
- •2.1 Деформации и напряжения. Метод сечений
- •2.2 Простейшие типы деформации стержней
- •2.3 Допущения, принимаемые при расчетах на прочность
- •3 Растяжение-сжатие стержней. Свойства материалов
- •3.1 Определение деформаций и напряжений при растяжении – сжатии
- •3.3 Твердость материалов
- •4 Сдвиг и кручение
- •4.1. Напряжения и деформации при сдвиге
- •4.2 Статические моменты сечения. Центр масс сечения
- •4.3 Моменты инерции сечений
- •4.4 Понятие о крутящем моменте
- •5 Изгиб прямолинейного стержня
- •5.1 Понятия о деформации изгиба
- •5.2 Определение нормальных напряжений при изгибе
- •5.3 Определение деформаций при изгибе
- •6 Сложные сопротивления. Местные напряжения
- •6. 1 Понятие о теориях прочности
- •6.2 Изгиб с кручением стержней круглого поперечного сечения
- •6.3 Концентрация напряжений
- •6.4 Контактные напряжения
- •7 Устойчивость сжатых стержней
- •7.1 Устойчивость равновесия сжатого стержня
- •7.2 Определение критической силы. Задача Эйлера
- •8 Прочность при циклически изменяющихся напряжениях
- •8.1 Понятие об усталости материалов
- •8.4 Факторы, влияющие на предел выносливости
- •9 Основы триботехники
- •9.1 Общие сведения
- •9.2 Трение и изнашивание
- •10 Основные принципы и правила конструирования
- •10.1 Общие сведения
- •10.2 Стандартизация и унификация
- •10.3 Прочность и жесткость
- •10.4 Точность взаимного положения деталей
- •10.5 Другие методы и принципы конструирования
- •11 Конструкционные и смазочные материалы
- •11.1 Требования к конструкционным материалам
- •11.2 Черные металлы
- •11.2.1 Чугуны
- •1.2.2 Стали
- •11. 3.1 Медь и ее сплавы
- •11. 3.2 Алюминий и его сплавы
- •11.3.3 Сплавы титана и магния, баббиты
- •11.4 Пластмассы
- •11. 5 Смазочные материалы
- •12 Механические передачи
- •12.1 Характеристики механических передач
- •12.2 Фрикционные механизмы
- •12.2.1 Общие сведения
- •12.2.2 Кинематика фрикционных механизмов
- •12.2.3 Расчет фрикционных передач
- •12.3 Ременные передачи
- •12.3.1 Кинематика, геометрия и силы в ременных передачах
- •12.3.2 Порядок расчета
- •12.4 Зубчатые механизмы. Прямозубые цилиндрические передачи
- •12.4.1 Параметры цилиндрических прямозубых колес
- •12.4.2 Конструкции и материалы зубчатых колес
- •12.4.3 Виды повреждений зубьев
- •12.5 Особенности цилиндрических косозубых передач
- •12.5.2 Расчет косозубой цилиндрической передачи на прочность
- •12.6 Конические зубчатые передачи
- •12.6.1 Силы, действующие в зацеплении конической передачи
- •12.6.2 Расчет конической передачи на прочность
- •12.7 Передачи с круговинтовым зацеплением Новикова
- •12.8 Планетарные и волновые зубчатые передачи
- •12.8.1 Планетарные механизмы
- •12.8.2 Волновые зубчатые передачи
- •12.9 Червячные передачи
- •12.10 Механизмы винт-гайка
- •12.11 Цепные передачи
- •12.11.1 Конструкции приводных цепей
- •12.11.2 Расчеты цепных передач
- •12.12 Рычажные передачи
- •13 Валы и оси
- •13.1 Конструкции валов и осей
- •13.2 Расчеты валов и осей
- •14 Опоры осей и валов
- •14.1 Требования, предъявляемые к опорам
- •14.2 Подшипники скольжения
- •14.3 Подшипники качения
- •15 Муфты
- •15.1 Назначение и классификация муфт
- •15.2 Постоянные муфты
- •15.3 Управляемые муфты
- •15.4 Самоуправляемые муфты
- •16 Корпуса
- •17 Упругие элементы
- •18 Соединения деталей
- •19 Динамика механизмов
4.2 Статические моменты сечения. Центр масс сечения
При рассмотрении деформации растяжения, сжатия, сдвига было установлено, что прочность и жесткость элементов конструкций зависит только от площади поперечного сечения и свойств материала элементов. При деформациях кручения и изгиба, при расчетах сжатых стержней на устойчивость, прочность и жесткость элементов конструкции зависят также от формы их поперечного сечения. К числу геометрических характеристик сечения, учитывающих его размеры, форму и влияющих на прочность и жесткость конструкций, относятся статические моменты, моменты инерции и моменты сопротивления сечения.
Статическим моментом сечения S относительно любой оси называется взятая по всей площади сечения сумма произведений площадей п элементарных площадок и их расстояний до этой оси. Так, статический момент сечения (рис. 4.2) относительно оси OZ
где n — число элементарных площадок сечения; Ai — площадь элементарной i-й площадки сечения, расположенной на расстоянии yi , от оси OZ.
При
→
0 и n → ∞
где
— элементарная площадка.
Размерность статических моментов — длина в кубе. Статические моменты могут быть положительными, отрицательными и равными нулю.
Считая,
что поверхностная плотность
сечения
постоянна, координаты центра масс
сечения
,
можно выразить через статические
моменты:
Аналогично
где
— массы элементарных площадок сечения;
М — масса сечения; А — площадь сечения;
,
—статические моменты сечения относительно
координатных осей OZ и OY соответственно.
Из
приведенных выражений видно, что при
=0,
=0,
т.е. при прохождении координатных осей
через центр масс С, статические моменты
сечения относительно этих осей будут
равны нулю, так как
.
Такие координатные оси называют
центральными. Это следствие можно
выразить еще так: если статические
моменты сечения относительно
координатных осей, например OZ и OY, равны
нулю, т.е.
,
,
то эти оси проходят через центр масс С
сечения.
4.3 Моменты инерции сечений
Полярным моментом инерции сечения называется взятая по всей площади сечения сумма произведений площадей элементарных площадок и квадратов расстояний от них до данного полюса (точки). Из рис. 4.2 находим:
где
— расстояние от площадки
до полюса (точки О),
Рис. 4.2
Осевым моментом инерции сечения называется взятая по всей площади сечения сумма произведений площадей элементарных площадок и квадратов расстояний от них до оси. Так, моменты инерции сечения относительно координатных осей OZ и OY Отбудут соответственно равны:
Так
как
,
то, сравнив приведенные выражения,
получим
т.е. сумма осевых моментов инерции сечения относительно двух взаимно перпендикулярных осей равна полярному моменту инерции этого сечения относительно точки пересечения рассматриваемых осей. Моменты инерции сечений — всегда положительные величины.