
- •Відповіді на іспит іСіТ.
- •1. Сучасне розуміння поняття «інформація»
- •2. Корисність інформації для користувача інформаційної системи
- •Своєчасність
- •Достатність
- •Зрозумілість
- •Недопущення викривлення
- •Наприклад, якщо іс має підтримувати маркетингові дослідження, то включення до бази даних іс інформації тільки з одного регіону країни може негативно вплинути на результат. Релевантність
- •Зіставлюваність
- •Надмірність
- •Прийнятність формату
- •3. Інформаційні ресурси
- •Інформаційні фахівці
- •4. Класифікація інформаційних систем управління
- •Класифікація інформаційних систем управління
- •5. Структура інформаційної системи менеджменту. Підсистеми ісм
- •6. Етапи розвитку інформаційних технологій
- •7. Технологічні процеси автоматизованого оброблення економічної інформації
- •Структура економічної інформації
- •9. Методи класифікації та кодування інформації
- •Організація позамашинної інформаційної бази
- •Організація машинної інформаційної бази. Поняття банку даних
- •Етапи проектуваня баз даних
- •Моделі даних
- •Тема 3. Технологічні засоби автоматизованого проектування інформаційних систем
- •14. Принципи проектування інформаційних систем
- •1) Принцип системного підходу
- •1 Етап. Класичний підхід до розроблення програмного забезпечення (пз) іс.
- •2 Етап. Методи програмної інженерії.
- •3 Етап. Case-технологія.
- •Класифікація case-засобів за функціональним призначенням
- •Сутність групової роботи та її комп’ютерна підтримка
- •Технології підтримки групової роботи
- •Системи підтримки групової роботи
- •Системи автоматизації діловодства та електронного документообігу
- •Системи керування контентом
- •Характеристика засобів бізнес-аналітики
- •Сутність і фактори виникнення сховищ даних
- •Особливості сховищ даних.
- •Компоненти сховища даних
- •Види і моделі сховищ даних
- •Моделі сховищ даних
- •Багатовимірна модель
- •Реляційна модель
- •Гібридна модель
- •Технологічні засоби оперативного аналітичного оброблення даних olap. Правила Кодда.
- •30. Визначення olap за тестом fasmi.
- •Напрями розвитку технологій бізнес-аналітики
- •Поняття штучного інтелекту
- •Напрямки досліджень та розробок в галузі штучного інтелекту
- •Моделі подання знань в системах штучного інтелекту
- •Суть і класифікація експертних систем
- •Архітектура експертних систем
- •Етапи життєвого циклу експертних систем
- •Інтелектуальний аналіз даних (Data Mining)
- •Поняття і основні властивості програмних агентів
- •Основні властивості програмних агентів
- •Класифікація програмних агентів
- •Мультиагентні системи
- •Інтегровані інформаційні системи підприємств і організацій
- •43. Види інтеграції інформаційних ресурсів
- •44.Технології динамічної інтеграції інформаційних ресурсів
- •45. Сутність електронного бізнесу
- •Класифікація іс електронного бізнесу за суб’єктами взаємодії
- •Класифікація іс електронного бізнесу за функціональним призначенням
- •1) Віртуальні платіжні системи
- •2) Іс Internet-банкінгу
- •3) Іс керування інвестиціями через Internet
- •Моделі електронної торгівлі
- •Іс віртуальних підприємств
- •Електронний уряд
- •Інформаційна безпека іс. Види загроз безпеці інформації
- •Види умисних загроз безпеці інформації
- •Принципи створення систем інформаційної безпеки
- •Засоби захисту інформації.
- •Механізми безпеки інформації
- •Загальні поняття криптографії
- •Криптографічні методи
Моделі подання знань в системах штучного інтелекту
Знання — сукупність даних про світ, що включають інформацію про властивості об'єктів, закономірності процесів і явищ, а також правила використання цієї інформації для прийняття рішень. Правила використання включають систему причинно-наслідкових зв'язків. Головна відмінність знань від даних полягає в їхній активності, тобто поява в базі нових фактів або встановлення нових зв'язків може стати джерелом змін у прийнятті рішень.
Знання – це сукупність фактів, закономірностей, відношень та евристичних правил, що відображають рівень обізнаності з проблемами деякої предметної області.
Знання можуть бути:
декларативні
процедурні
Декларативні знання містять в собі лише уявлення про структуру певних понять. Ці знання наближені до даних, фактів. Наприклад: вищий навчальний заклад є сукупністю факультетів, а кожен факультет у свою чергу є сукупністю кафедр.
Процедурні знання мають активну природу. Вони визначають уявлення про засоби і шляхи отримання нових знань, перевірки знань. Це алгоритми різного роду. Наприклад: метод мозкового штурму для пошуку нових ідей.
Моделі подання знань
Проблема подання знань є центральною для систем, що базуються на знаннях, і, зокрема, експертних систем, оскільки від її успішного розв’язання залежить реалізація основної їх функції - одержання нового знання. Саме виходячи з цього визначаються структура і форма організації моделей і методів подання знань, що здійснюють вирішальний вплив на ефективність системи, сприйняття зовнішньої інформації, діалог з користувачем. Як окрема область дослідження подання знань розвивається із середини 1960-х років.
Основні (класичні) моделі подання знань:
логічні:
числення предикатів;
евристичні:
продукційні правила;
мережні моделі;
фрейми.
В основі логічних моделей знань лежить поняття формальної системи, прикладом якої є числення предикатів.
На відміну від логічних, евристичні моделі знань використовують набір різноманітних засобів, що передають специфічні особливості моделі. Завдяки цьому евристичні моделі перевершують логічні за можливостями адекватного відображення предметної області і за ефективністю правил логічного виведення. До евристичних моделей, використовуваних в експертних системах, належать продукційні, мережні і фреймові системи.
Логічні моделі подання знань для опису розв’язуваної проблеми використовують твердження деякої формальної системи. Ціль проблеми формулюється також у вигляді твердження, справедливість якого необхідно встановити або спростувати, виходячи з аксіом і правил виведення формальної системи.
Відповідно до правил, встановлених у формальній системі, заключному твердженню - теоремі, отриманій з початкової системи тверджень (аксіом, посилок), приписується істинне значення, у разі якщо кожній посилці або аксіомі також приписується істинне значення.
Множину базових елементів логічних моделей подання знань складають логічні зв’язки, квантори, константи, змінні, функціональні і предикатні символи; синтаксичні правила. Останні визначають поняття: терм, атом, правильно побудована формула. Правила виведення дають змогу із наявних аксіом одержувати деякі висновки.
Зазвичай для позначення об’єктів предметної області використовуються константи, а для позначення класів об’єктів, властивостей і відношень між об’єктами вибираються імена предикатів. Формули, що містять квантори і змінні, описують загальні закономірності предметної області.
Системи продукцій. Під продукційною системою розуміють певний метод організації обчислювального процесу, при якому програма перетворення деякої інформаційної структури задається у вигляді множини правил-продукцій.
Кожне правило являє собою сполучення елементів: умова придатності - дія. Умова придатності специфікує деякі вимоги до поточного стану інформаційної структури, а дія містить опис операцій, які потрібно виконати у разі задоволення цих вимог.
Продукційні правила – найбільш простий спосіб представлення знань. Він грунтується на представленні знань в формі правил, структурованих у відповідності до схеми «якщо – то». Частина правила «якщо» називається посилкою (або умовою придатності), а частина «то» – висновком.
Правило записується так: Якщо а1, а2, . . . , аn то b.
Наприклад: Якщо (1) у є батьком х
(2) z є братом у
То z є дядьком х
Якщо посилок немає, тоді знання складаються лише з висновку і називаються фактами.
У продукційних системах використовуються два основні методи логічного виведення: пряме і зворотне.
За прямого виведення правила досліджуються одне за одним у певній послідовності. Виходячи з початкових умов (даних), введених користувачем, для кожного правила оцінюється істинність чи хибність його умови придатності. Якщо умова істинна, правило активізується, в іншому разі - ні. Процедура виведення є ітеративною і може потребувати декількох прогонів через усю низку правил, поки буде визначене певне значення цільової змінної.
За зворотного виведення припускається істинність наслідку (дії) деякого правила, після чого потрібно, рухаючись низкою правил у зворотному напрямку, довести, що є підстави для такого твердження.
Переваги продукційних систем:
універсальність методу програмування, що уможливлює створення різноманітних прикладних систем, що відрізняються способами подання правил і структур даних;
природна модульність організації знань, коли кожна продукція являє собою закінчений фрагмент знань про предметну область, а множина продукцій природно структурується на підмножини, що належать до певних компонентів знань;
незалежність кожної продукції від змісту інших продукцій забезпечує легкість їх формулювання та модифікації;
декларативність продукційної системи, що забезпечує опис самої предметної області, а не відповідних процедур опрацювання.
Мережні моделі подають знання у вигляді мережі, вершинам якої відповідають поняття (об’єкти, події, процеси, явища), а дугам - відношення, що існують між поняттями.
Класифікація мережних моделей здійснюється в залежності від умов опису вершин і зв’язків. Якщо вершини не мають власної внутрішньої структури, то відповідні мережі називають мережами простого типу. Якщо ж вершини мережі самі мають деяку структуру у вигляді мережі, то такі мережі називають мережами ієрархічного типу. Відношення між вершинами можуть бути однаковими; у цьому разі мережі називаються однорідними. Якщо ці відношення мають різноманітний зміст, то мережа називається неоднорідною.
В залежності від характеру відношень, приписуваних дугам мережі, виділяють такі типи мереж:
1. Функціональні мережі, у яких дві з’єднані дугою вершини відповідають: одна - деякій функції, друга - аргументу даної функції.
2. Сценарії - однорідні мережі, у яких використовується єдиний тип відношень - відношення нестрогого порядку. Найчастіше це відношення визначає всі можливі послідовності подій.
3. Семантичні мережі, у яких використовуються відношення різноманітного типу, а вершини можуть мати різну інтепретацію. Основними структурними одиницями, із яких будується семантична мережа, є фрейми.
Порівняно з іншими моделями, семантичні мережі мають переваги:
більш ефективний інформаційний пошук, оскільки асоціації між об’єктами мережі визначають шляхи доступу, що проходять по базі знань;
можливість явного відображення структур, властивих знанням про предметну область, наприклад, відношень «частка-ціле», «елемент-множина», «клас-підклас» та ін.
Фрейми. Фрейм являє собою системно-структурний опис предметної області (подій, явищ, ситуацій, станів і т. ін.), який складається з порожніх аспектних (рольових) позицій (слотів), що відповідають змістовним ознакам предметної області й після заповнення конкретними даними перетворюють фрейм на носій конкретного знання.
В перекладі з англійської «фрейм» (frame) означає «каркас», «рамка».
З кожним фреймом може бути асоційована інформація різних видів. Одна її частина вказує, як варто використовувати даний фрейм, інша - які наслідки може мати його виконання, третя - що слід виконати, якщо ці очікування не підтвердяться.
Структура фрейма зазвичай має такий вигляд:
{<ім’я фрейма> <ім’я слота > <значення слота>
<ім’я слота > <значення слота> ... }
Імена слотів часто називають рольовими мітками або просто ролями.
Наприклад, структура фрейма відрядження подається як:
{відрядження хто <значення слота> куди
<значення слота> коли <значення слота> на який термін
<значення слота> із ким <значення слота>}
При цьому деякі слоти при переході до конкретного фрейму мають обов’язково заповнюватися, а інші можуть залишатися порожніми.
Для фреймових моделей подання знань основною операцією є пошук за зразком. Зразок являє собою фрейм, у якому заповнені не всі структурні одиниці, а тільки ті, за якими серед фреймів, що зберігаються в пам’яті комп’ютера, будуть відшукуватися потрібні фрейми. Наприклад, якщо у зразку зазначене ім’я деякого слота і його значення, то процедура пошуку за зразком забезпечує вибірку усіх фреймів, у яких міститься слот із таким ім’ям і таким значенням слота, як у зразка. Також може бути задана деяка логічна функція від імені фрейма, деяких імен слотів і значень слотів.
Іншими процедурами, характерними для фреймових моделей, є процедури поповнення слотів даними, а також введення в систему нових фреймів і нових зв’язків між ними.
Окремі фрейми можуть об’єднуватись у мережу за допомогою семантичних відношень. Прикладами пар відношень, у яких одне відношення є інверсією іншого, є такі:
бути частиною / мати частину;
мати вид / бути прикладом;
бути елементом множини / включати;
бути підмножиною / включати;
бути наступним / передувати;
мати суб’єкта / бути суб’єктом;
мати об’єкт / бути об’єктом;
бути причиною / бути наслідком.
Такі зв’язки-відношення дозволяють з’ясовувати структуру понять і дій, послідовності дій, спрямованих на досягнення цілей.