
- •Я. Д. Половицкий алгебра
- •Введение
- •Основные обозначения
- •Часть 1 Глава 1. Комплексные числа §1. Система комплексных чисел
- •§2. Алгебраическая форма комплексного числа
- •Геометрическая интерпретация сложения и вычитания комплексных чисел.
- •§3. Тригонометрическая форма комплексного числа
- •§4. Сопряженные числа
- •Свойства сопряженных чисел
- •§5. Возведение комплексных чисел в степень
- •§6. Извлечение корня из комплексного числа
- •§7. Решение квадратных уравнений
- •Квадратные уравнения с действительными
- •Квадратные уравнения с комплексными коэффициентами
- •§8. Корни из единицы
- •Свойства
- •Первообразные
- •Глава 2. Отображения множеств §1. Основные определения
- •§2. Умножение отображений
- •Правая запись.
- •Свойства умножения отображений
- •§3. Преобразования множеств
- •Глава 3. Перестановки и подстановки §1. Перестановки из n чисел
- •§2. Подстановки n-й степени
- •Глава 4. Определители n-го порядка §1. Определение определителя
- •§2. Свойства определителей
- •§3. Вычисление определителей
- •§4. Еще одно свойство определителей
- •Глава 5. Матрицы §1. Простые и двойные суммы
- •Свойства простых сумм
- •Двойные суммы
- •Свойства двойных сумм
- •§2. Линейные преобразования неизвестных
- •§3. Умножение матриц
- •§4. Обратная матрица
- •Единственность единичной и обратной матриц
- •§5. Решение матричных уравнений
- •Матричное доказательство теоремы Крамера
- •Глава 6. Основные алгебраические структуры §1. Алгебраическая операция
- •§2. Группы
- •§3. Кольца
- •Некоторые следствия из аксиом кольца
- •Делители нуля
- •§4. Поля
- •Некоторые следствия из аксиом поля
- •§5. Подполя и расширения полей
- •§6. Изоморфизм колец (полей)
- •§7. Построение поля комплексных чисел на языке подполей и расширений
- •§8. Определители и матрицы над произвольным полем
- •Глава 7. Многочлены и их корни §1.Кольцо многочленов
- •§2. Деление с остатком
- •§3 Делители. Свойства делимости многочленов
- •Свойства делимости многочленов
- •§4.Наибольший общий делитель
- •Следствие из алгоритма Евклида
- •Свойства взаимно простых многочленов
- •§5.Корни многочленов
- •Метод Горнера
- •Кратные корни
- •§6.Число корней многочлена в произвольном поле
- •Равносильность двух понятий равенства многочленов над бесконечным полем
- •Поле разложения многочлена
- •§7.Формулы Виета
- •§8.Основная теорема алгебры комплексных чисел
- •Следствия из основной теоремы
- •Отделение кратных корней
- •§9.Многочлены с действительными коэффициентами
- •§10. Неприводимые и приводимые многочлены над полями c и r
- •Неприводимые многочлены над полем c
- •Неприводимые многочлены над полем r
- •Глава 8. Линейные пространства § 1. Определение линейного пространства
- •Основные примеры линейных пространств
- •§ 2. Линейная зависимость векторов
- •§ 3. Максимальные линейно независимые подсистемы
- •§ 4. Основная теорема о линейной зависимости. Ее следствия
- •Следствия из основной теоремы о линейной зависимости
- •§ 5. Конечномерные линейные пространства
- •Следствия из основной теоремы о линейной зависимости для конечномерных линейных пространств
- •§ 6. Изоморфизм линейных пространств
- •§ 7. Координаты вектора
- •§ 8. Матрица перехода
- •Связь координат вектора а в разных базисах
- •§ 9. Подпространства линейного пространства
- •Глава 9. Ранг матрицы и системы линейных уравнений § 1. Ранг матрицы. Теорема о базисном миноре
- •Следствия из теоремы о базисном миноре
- •Применение ранга матрицы для решения вопросов о линейной зависимости в пространстве p(n)
- •Применение ранга матрицы к решению вопроса о линейной зависимости векторов в конечномерном линейном пространстве
- •§ 2. Системы линейных уравнений
- •Критерий совместности системы линейных уравнений
- •Обоснование практического способа решения систем линейных уравнений с помощью ранга матрицы
- •Общее решение
- •Число решений совместной системы линейных уравнений
- •Однородные системы и их пространства решений
- •Размерность пространства решений однородной системы
- •§ 3. Задание подпространств конечномерных линейных пространств системами линейных однородных уравнений
- •§4. Связь решений однородных и неоднородных систем линейных уравнений
- •Глава 10. Линейные преобразования линейных пространств § 1. Линейные отображения линейных пространств
- •§2. Линейные преобразования линейных пространств
- •Координаты образа вектора при линейном преобразовании
- •§ 3. Связь матриц линейного преобразования в разных базисах конечномерного линейного пространства
- •Понятие о нормальной форме Жордана
- •§4. Операции над линейными преобразованиями
- •§ 5. Ядро и область значений линейного преобразования
- •Невырожденные линейные преобразования
- •§ 6. Собственные значения и собственные векторы линейного преобразования
- •§ 7. Линейные преобразования с простым спектром
- •Часть 2 глава 1. Числовые функции на линейных пространствах
- •§1. Линейные функции
- •§2. Билинейные функции
- •§3. Квадратичные формы
- •Переход к новому базису
- •§4. Приведение квадратичной формы к каноническому виду
- •Комплексный нормальный вид
- •Действительный нормальный вид
- •§5. Закон инерции действительных квадратичных форм
- •Положительно определенные квадратичные формы
- •Глава 2. Евклидовы пространства §1. Скалярное произведение
- •§2. Ортогональные системы векторов
- •§3. Длина вектора. Угол между векторами
- •Корректность определения угла вытекает из неравенств , равносильных неравенству Коши – Буняковского: .
- •§4. Ортонормированные базисы
- •§5. Изоморфизм евклидовых пространств
- •§6. Ортогональные дополнения подпространств
- •§7. Унитарные пространства
- •Глава 3. Некоторые виды линейных преобразований евклидовых пространств §1. Ортогональные матрицы
- •Свойства ортогональных матриц
- •§2. Сопряженные линейные преобразования
- •§3. Ортогональные преобразования
- •§4. Симметрические преобразования
- •§5. Основная теорема о симметрических преобразованиях
- •§6. Приведение квадратичной формы к главным осям
- •Практическое приведение к главным осям
- •Практическое нахождение сон-базиса
- •Глава 4. Аффинные пространства и аффинные преобразования §1. Определение аффинного пространства
- •§2. Система координат в аффинном пространстве
- •§3. Плоскости в аффинных пространствах
- •§4. Аффинные преобразования
- •§5. Точечно-векторные евклидовы пространства. Группы и геометрии
- •Группы и геометрии
- •Глава 5. Квадрики §1. Квадрики в аффинных пространствах
- •§2. Метрическая классификация квадрик
- •§3. Приведение уравнения кривой (поверхности) второго порядка к каноническому виду
- •Глава 6. Многочлены от нескольких неизвестных §1. Кольцо многочленов от n неизвестных
- •§2. Симметрические многочлены
- •§3. Однородные симметрические многочлены
- •§4. Значение симметрического многочлена от корней уравнения
- •Библиографический список
- •Оглавление
- •Половицкий Яков Давидович Алгебра
- •614990. Пермь, ул. Букирева, 15
- •614990. Пермь, ул. Букирева, 15
§ 3. Связь матриц линейного преобразования в разных базисах конечномерного линейного пространства
Лемма 3. Если С и D – две матрицы n-го порядка над Р, e некоторый базис линейного пространства L над Р и еС=eD, то C=D.
Доказательство. Пусть
С
=
D =
Тогда из равенства eC=eD получаем:
e1y1i+…+enyni= e1d1i+…+endni =b (1) (суммы, стоящие слева, мы обозначили через b). Тогда (1) – два выражения вектора b из L через базис е. Ввиду единственности координат вектора b в базисе е, из (1) получаем:
y1i=d1i, …, yni=dni для любого i. Следовательно, C=D.
Лемма доказана.
Теорема 2. Пусть L – n-мерное линейное пространство над полем Р, линейное преобразование L, e и e` два базиса L. Если A и B – матрицы линейного преобразования , соответственно, в базисах e и e`, то В=Т-1АТ, где Тматрица перехода от базиса е к базису е`.
Доказательство. Так как А и В – матрицы линейного преобразования в базисах e и e`, то (е)=еА, (2)
(е`)=e`B. (3)
Обозначим через Т матрицу перехода от e к e`, т.е. справедливо равенство e`=eT. (4)
Подставим e` из (4) в (3): (eT)=(eT)B=e(TB) . (5)
Докажем, что (eT)= (e)T . (6)
i-й
элемент матрицы (еТ)
равен
,
так как
– линейное преобразование. Справа мы
получили i-й
элемент матрицы (е)Т.
Этим доказано равенство (6).
В силу (6) (еТ)= (е)Т=(еА)Т=е(АТ) . (7)
Подставляя (7) в левую часть (5), получаем: е(АТ)=е(ТВ). Отсюда, в силу леммы 3, АТ=ТВ. Так как матрица Т невырожденная, то для нее существует обратная матрица Т-1. Из последнего равенства имеем: В=Т-1АТ.
Теорема доказана.
Определение 4. Две матрицы С и D, связанные равенством
С= Q-1DQ (для некоторой невырожденной матрицы Q) называются подобными; говорят также, что С получается из D путем трансформирования матрицей Q (все матрицы – над одним полем Р).
Справедливо утверждение, обратное теореме 2.
Теорема 3. Любые две подобные матрицы А и В n-го порядка над полем Р задают одно и то же линейное преобразование произвольного n-мерного линейного пространства над Р.
Доказательство. По условию В= Q-1АQ, где |Q|0. Рассмотрим произвольное n-мерное линейное пространство L над Р. Пусть е некоторый базис L. В силу следствия теоремы 1, существует линейное преобразование этого пространства, которое в базисе е имеет заданную матрицу А. Так как |Q|0, то e`=eQ является базисом L, и Q матрица перехода от е к е`. По теореме 2 преобразование в базисе е` имеет матрицу Q-1AQ, а она по условию равна В.
Теорема доказана.
Понятие о нормальной форме Жордана
В силу теоремы 2 матрицы линейного преобразования конечномерного линейного пространства над полем Р в разных базисах подобны. Естественно возникает вопрос: нельзя ли среди всех подобных матриц выбрать «наиболее простую»? Этот вопрос решается положительно для поля С комплексных чисел.
О
J0= называется клеткой Жордана
(0 некоторый элемент поля Р).
О
J1
0
.
.
.
0
Js
J=
,
по главной диагонали которой стоят клетки Жордана, называется матрицей Жордана.
Справедлива следующая
Теорема 4. Всякая матрица А с комплексными элементами подобна некоторой матрице Жордана с комплексными элементами (последняя называется нормальной формой Жордана матрицы А).
Доказательство этой и более общей теорем (для произвольного поля) требует изложения обширного материала и выходит за рамки данного пособия. Его можно найти, например, в [1].