
- •Я. Д. Половицкий алгебра
- •Введение
- •Основные обозначения
- •Часть 1 Глава 1. Комплексные числа §1. Система комплексных чисел
- •§2. Алгебраическая форма комплексного числа
- •Геометрическая интерпретация сложения и вычитания комплексных чисел.
- •§3. Тригонометрическая форма комплексного числа
- •§4. Сопряженные числа
- •Свойства сопряженных чисел
- •§5. Возведение комплексных чисел в степень
- •§6. Извлечение корня из комплексного числа
- •§7. Решение квадратных уравнений
- •Квадратные уравнения с действительными
- •Квадратные уравнения с комплексными коэффициентами
- •§8. Корни из единицы
- •Свойства
- •Первообразные
- •Глава 2. Отображения множеств §1. Основные определения
- •§2. Умножение отображений
- •Правая запись.
- •Свойства умножения отображений
- •§3. Преобразования множеств
- •Глава 3. Перестановки и подстановки §1. Перестановки из n чисел
- •§2. Подстановки n-й степени
- •Глава 4. Определители n-го порядка §1. Определение определителя
- •§2. Свойства определителей
- •§3. Вычисление определителей
- •§4. Еще одно свойство определителей
- •Глава 5. Матрицы §1. Простые и двойные суммы
- •Свойства простых сумм
- •Двойные суммы
- •Свойства двойных сумм
- •§2. Линейные преобразования неизвестных
- •§3. Умножение матриц
- •§4. Обратная матрица
- •Единственность единичной и обратной матриц
- •§5. Решение матричных уравнений
- •Матричное доказательство теоремы Крамера
- •Глава 6. Основные алгебраические структуры §1. Алгебраическая операция
- •§2. Группы
- •§3. Кольца
- •Некоторые следствия из аксиом кольца
- •Делители нуля
- •§4. Поля
- •Некоторые следствия из аксиом поля
- •§5. Подполя и расширения полей
- •§6. Изоморфизм колец (полей)
- •§7. Построение поля комплексных чисел на языке подполей и расширений
- •§8. Определители и матрицы над произвольным полем
- •Глава 7. Многочлены и их корни §1.Кольцо многочленов
- •§2. Деление с остатком
- •§3 Делители. Свойства делимости многочленов
- •Свойства делимости многочленов
- •§4.Наибольший общий делитель
- •Следствие из алгоритма Евклида
- •Свойства взаимно простых многочленов
- •§5.Корни многочленов
- •Метод Горнера
- •Кратные корни
- •§6.Число корней многочлена в произвольном поле
- •Равносильность двух понятий равенства многочленов над бесконечным полем
- •Поле разложения многочлена
- •§7.Формулы Виета
- •§8.Основная теорема алгебры комплексных чисел
- •Следствия из основной теоремы
- •Отделение кратных корней
- •§9.Многочлены с действительными коэффициентами
- •§10. Неприводимые и приводимые многочлены над полями c и r
- •Неприводимые многочлены над полем c
- •Неприводимые многочлены над полем r
- •Глава 8. Линейные пространства § 1. Определение линейного пространства
- •Основные примеры линейных пространств
- •§ 2. Линейная зависимость векторов
- •§ 3. Максимальные линейно независимые подсистемы
- •§ 4. Основная теорема о линейной зависимости. Ее следствия
- •Следствия из основной теоремы о линейной зависимости
- •§ 5. Конечномерные линейные пространства
- •Следствия из основной теоремы о линейной зависимости для конечномерных линейных пространств
- •§ 6. Изоморфизм линейных пространств
- •§ 7. Координаты вектора
- •§ 8. Матрица перехода
- •Связь координат вектора а в разных базисах
- •§ 9. Подпространства линейного пространства
- •Глава 9. Ранг матрицы и системы линейных уравнений § 1. Ранг матрицы. Теорема о базисном миноре
- •Следствия из теоремы о базисном миноре
- •Применение ранга матрицы для решения вопросов о линейной зависимости в пространстве p(n)
- •Применение ранга матрицы к решению вопроса о линейной зависимости векторов в конечномерном линейном пространстве
- •§ 2. Системы линейных уравнений
- •Критерий совместности системы линейных уравнений
- •Обоснование практического способа решения систем линейных уравнений с помощью ранга матрицы
- •Общее решение
- •Число решений совместной системы линейных уравнений
- •Однородные системы и их пространства решений
- •Размерность пространства решений однородной системы
- •§ 3. Задание подпространств конечномерных линейных пространств системами линейных однородных уравнений
- •§4. Связь решений однородных и неоднородных систем линейных уравнений
- •Глава 10. Линейные преобразования линейных пространств § 1. Линейные отображения линейных пространств
- •§2. Линейные преобразования линейных пространств
- •Координаты образа вектора при линейном преобразовании
- •§ 3. Связь матриц линейного преобразования в разных базисах конечномерного линейного пространства
- •Понятие о нормальной форме Жордана
- •§4. Операции над линейными преобразованиями
- •§ 5. Ядро и область значений линейного преобразования
- •Невырожденные линейные преобразования
- •§ 6. Собственные значения и собственные векторы линейного преобразования
- •§ 7. Линейные преобразования с простым спектром
- •Часть 2 глава 1. Числовые функции на линейных пространствах
- •§1. Линейные функции
- •§2. Билинейные функции
- •§3. Квадратичные формы
- •Переход к новому базису
- •§4. Приведение квадратичной формы к каноническому виду
- •Комплексный нормальный вид
- •Действительный нормальный вид
- •§5. Закон инерции действительных квадратичных форм
- •Положительно определенные квадратичные формы
- •Глава 2. Евклидовы пространства §1. Скалярное произведение
- •§2. Ортогональные системы векторов
- •§3. Длина вектора. Угол между векторами
- •Корректность определения угла вытекает из неравенств , равносильных неравенству Коши – Буняковского: .
- •§4. Ортонормированные базисы
- •§5. Изоморфизм евклидовых пространств
- •§6. Ортогональные дополнения подпространств
- •§7. Унитарные пространства
- •Глава 3. Некоторые виды линейных преобразований евклидовых пространств §1. Ортогональные матрицы
- •Свойства ортогональных матриц
- •§2. Сопряженные линейные преобразования
- •§3. Ортогональные преобразования
- •§4. Симметрические преобразования
- •§5. Основная теорема о симметрических преобразованиях
- •§6. Приведение квадратичной формы к главным осям
- •Практическое приведение к главным осям
- •Практическое нахождение сон-базиса
- •Глава 4. Аффинные пространства и аффинные преобразования §1. Определение аффинного пространства
- •§2. Система координат в аффинном пространстве
- •§3. Плоскости в аффинных пространствах
- •§4. Аффинные преобразования
- •§5. Точечно-векторные евклидовы пространства. Группы и геометрии
- •Группы и геометрии
- •Глава 5. Квадрики §1. Квадрики в аффинных пространствах
- •§2. Метрическая классификация квадрик
- •§3. Приведение уравнения кривой (поверхности) второго порядка к каноническому виду
- •Глава 6. Многочлены от нескольких неизвестных §1. Кольцо многочленов от n неизвестных
- •§2. Симметрические многочлены
- •§3. Однородные симметрические многочлены
- •§4. Значение симметрического многочлена от корней уравнения
- •Библиографический список
- •Оглавление
- •Половицкий Яков Давидович Алгебра
- •614990. Пермь, ул. Букирева, 15
- •614990. Пермь, ул. Букирева, 15
§2. Алгебраическая форма комплексного числа
Пусть α=(a,b) С. Тогда α=(a,b)=(a,0)+(0,b)=(a,0)+(b,0)∙(0,1)=a+bi.
Определение . Форма α=a+bi (где a,b – действительные числа) называется алгебраической формой комплексного числа.
Число i называется мнимой единицей, а – действительной частью числа α, bi – мнимой частью числа α. Числа вида bi называются мнимыми числами.
Отметим, что комплексные числа – это объединение действительных и недействительных чисел (но не действительных и мнимых!).
Теперь из определений операций (2) и (3) нетрудно установить правила действия над комплексными числами в алгебраической форме:
(a+bi)±(c+di)=(a±c)+(b±d)i,
(a+bi)∙(c+di)=(ac-bd)+(ad+bc)i,
Замечание. Если плоскость рассматривается как система комплексных чисел, то обычно координатные оси обозначаются так: R – действительная ось (бывшая ось ОХ), I – мнимая ось (бывшая ось ОY).
Геометрическая интерпретация сложения и вычитания комплексных чисел.
Рис.1
§3. Тригонометрическая форма комплексного числа
α=a+bi
Рис.2
Определение 1. Число r =|0α|≥0 называется модулем числа α, а угол φ – аргументом α (φ отсчитывается от положительного направления оси R против часовой стрелки).
Аргументов у каждого числа α бесконечно много, их общий вид φ+2πk(kЄZ). У любого комплексного числа, отличного от нуля, существует аргумент. Любое число α≠0 однозначно характеризуется модулем r и каким-либо аргументом φ; эти характеристики обычно называются полярными координатами точки α .
Из рисунка 2 видно, что a=rcos φ, b=rsin φ; тогда α=a+bi=r(cosφ+isinφ).
Определение 2. Форма α=r(cosφ+isinφ) называется тригонометрической формой комплексного числа.
Числа
r
и φ находят так:
,
.
Отметим, что если известен tg φ и известно, в какой четверти находится точка α, то однозначно находится угол φ (меньший 2π).
Замечание 1. Аргумент числа α можно отсчитывать и по часовой стрелке, но брать со знаком « - ».
В тригонометрической форме удобно умножать и делить комплексные числа. Нетрудно проверить, используя формулы синуса и косинуса суммы и разности двух углов (см., например, [1]), что справедливы следующие правила: если α=r(cosφ+isinφ) и β=r1(cosφ1+isinφ1), то αβ=rr1(cos(φ+φ1)+isin(φ+φ1)), (5)
и при β0
(6)
Из (5) и (6) получаем:
,
,
,
при β0.
Замечание 2. Из рис. 1 видно, что - равен расстоянию между точками α и β (это геометрический смысл модуля разности). Из этого рисунка, рассмотрев треугольники О(+) и О (и некоторые простые частные случаи), получаем
-++.
Геометрическая интерпретация умножения
– на рис. 3. Аналогичным образом, заменяя
через β-1,
можно получить геометрическую
интерпретацию деления.
Рис.3