
- •Я. Д. Половицкий алгебра
- •Введение
- •Основные обозначения
- •Часть 1 Глава 1. Комплексные числа §1. Система комплексных чисел
- •§2. Алгебраическая форма комплексного числа
- •Геометрическая интерпретация сложения и вычитания комплексных чисел.
- •§3. Тригонометрическая форма комплексного числа
- •§4. Сопряженные числа
- •Свойства сопряженных чисел
- •§5. Возведение комплексных чисел в степень
- •§6. Извлечение корня из комплексного числа
- •§7. Решение квадратных уравнений
- •Квадратные уравнения с действительными
- •Квадратные уравнения с комплексными коэффициентами
- •§8. Корни из единицы
- •Свойства
- •Первообразные
- •Глава 2. Отображения множеств §1. Основные определения
- •§2. Умножение отображений
- •Правая запись.
- •Свойства умножения отображений
- •§3. Преобразования множеств
- •Глава 3. Перестановки и подстановки §1. Перестановки из n чисел
- •§2. Подстановки n-й степени
- •Глава 4. Определители n-го порядка §1. Определение определителя
- •§2. Свойства определителей
- •§3. Вычисление определителей
- •§4. Еще одно свойство определителей
- •Глава 5. Матрицы §1. Простые и двойные суммы
- •Свойства простых сумм
- •Двойные суммы
- •Свойства двойных сумм
- •§2. Линейные преобразования неизвестных
- •§3. Умножение матриц
- •§4. Обратная матрица
- •Единственность единичной и обратной матриц
- •§5. Решение матричных уравнений
- •Матричное доказательство теоремы Крамера
- •Глава 6. Основные алгебраические структуры §1. Алгебраическая операция
- •§2. Группы
- •§3. Кольца
- •Некоторые следствия из аксиом кольца
- •Делители нуля
- •§4. Поля
- •Некоторые следствия из аксиом поля
- •§5. Подполя и расширения полей
- •§6. Изоморфизм колец (полей)
- •§7. Построение поля комплексных чисел на языке подполей и расширений
- •§8. Определители и матрицы над произвольным полем
- •Глава 7. Многочлены и их корни §1.Кольцо многочленов
- •§2. Деление с остатком
- •§3 Делители. Свойства делимости многочленов
- •Свойства делимости многочленов
- •§4.Наибольший общий делитель
- •Следствие из алгоритма Евклида
- •Свойства взаимно простых многочленов
- •§5.Корни многочленов
- •Метод Горнера
- •Кратные корни
- •§6.Число корней многочлена в произвольном поле
- •Равносильность двух понятий равенства многочленов над бесконечным полем
- •Поле разложения многочлена
- •§7.Формулы Виета
- •§8.Основная теорема алгебры комплексных чисел
- •Следствия из основной теоремы
- •Отделение кратных корней
- •§9.Многочлены с действительными коэффициентами
- •§10. Неприводимые и приводимые многочлены над полями c и r
- •Неприводимые многочлены над полем c
- •Неприводимые многочлены над полем r
- •Глава 8. Линейные пространства § 1. Определение линейного пространства
- •Основные примеры линейных пространств
- •§ 2. Линейная зависимость векторов
- •§ 3. Максимальные линейно независимые подсистемы
- •§ 4. Основная теорема о линейной зависимости. Ее следствия
- •Следствия из основной теоремы о линейной зависимости
- •§ 5. Конечномерные линейные пространства
- •Следствия из основной теоремы о линейной зависимости для конечномерных линейных пространств
- •§ 6. Изоморфизм линейных пространств
- •§ 7. Координаты вектора
- •§ 8. Матрица перехода
- •Связь координат вектора а в разных базисах
- •§ 9. Подпространства линейного пространства
- •Глава 9. Ранг матрицы и системы линейных уравнений § 1. Ранг матрицы. Теорема о базисном миноре
- •Следствия из теоремы о базисном миноре
- •Применение ранга матрицы для решения вопросов о линейной зависимости в пространстве p(n)
- •Применение ранга матрицы к решению вопроса о линейной зависимости векторов в конечномерном линейном пространстве
- •§ 2. Системы линейных уравнений
- •Критерий совместности системы линейных уравнений
- •Обоснование практического способа решения систем линейных уравнений с помощью ранга матрицы
- •Общее решение
- •Число решений совместной системы линейных уравнений
- •Однородные системы и их пространства решений
- •Размерность пространства решений однородной системы
- •§ 3. Задание подпространств конечномерных линейных пространств системами линейных однородных уравнений
- •§4. Связь решений однородных и неоднородных систем линейных уравнений
- •Глава 10. Линейные преобразования линейных пространств § 1. Линейные отображения линейных пространств
- •§2. Линейные преобразования линейных пространств
- •Координаты образа вектора при линейном преобразовании
- •§ 3. Связь матриц линейного преобразования в разных базисах конечномерного линейного пространства
- •Понятие о нормальной форме Жордана
- •§4. Операции над линейными преобразованиями
- •§ 5. Ядро и область значений линейного преобразования
- •Невырожденные линейные преобразования
- •§ 6. Собственные значения и собственные векторы линейного преобразования
- •§ 7. Линейные преобразования с простым спектром
- •Часть 2 глава 1. Числовые функции на линейных пространствах
- •§1. Линейные функции
- •§2. Билинейные функции
- •§3. Квадратичные формы
- •Переход к новому базису
- •§4. Приведение квадратичной формы к каноническому виду
- •Комплексный нормальный вид
- •Действительный нормальный вид
- •§5. Закон инерции действительных квадратичных форм
- •Положительно определенные квадратичные формы
- •Глава 2. Евклидовы пространства §1. Скалярное произведение
- •§2. Ортогональные системы векторов
- •§3. Длина вектора. Угол между векторами
- •Корректность определения угла вытекает из неравенств , равносильных неравенству Коши – Буняковского: .
- •§4. Ортонормированные базисы
- •§5. Изоморфизм евклидовых пространств
- •§6. Ортогональные дополнения подпространств
- •§7. Унитарные пространства
- •Глава 3. Некоторые виды линейных преобразований евклидовых пространств §1. Ортогональные матрицы
- •Свойства ортогональных матриц
- •§2. Сопряженные линейные преобразования
- •§3. Ортогональные преобразования
- •§4. Симметрические преобразования
- •§5. Основная теорема о симметрических преобразованиях
- •§6. Приведение квадратичной формы к главным осям
- •Практическое приведение к главным осям
- •Практическое нахождение сон-базиса
- •Глава 4. Аффинные пространства и аффинные преобразования §1. Определение аффинного пространства
- •§2. Система координат в аффинном пространстве
- •§3. Плоскости в аффинных пространствах
- •§4. Аффинные преобразования
- •§5. Точечно-векторные евклидовы пространства. Группы и геометрии
- •Группы и геометрии
- •Глава 5. Квадрики §1. Квадрики в аффинных пространствах
- •§2. Метрическая классификация квадрик
- •§3. Приведение уравнения кривой (поверхности) второго порядка к каноническому виду
- •Глава 6. Многочлены от нескольких неизвестных §1. Кольцо многочленов от n неизвестных
- •§2. Симметрические многочлены
- •§3. Однородные симметрические многочлены
- •§4. Значение симметрического многочлена от корней уравнения
- •Библиографический список
- •Оглавление
- •Половицкий Яков Давидович Алгебра
- •614990. Пермь, ул. Букирева, 15
- •614990. Пермь, ул. Букирева, 15
Отделение кратных корней
Пусть
, (3)
где k1+ k2+…+kl = n – каноническое разложение многочлена из С[x]. Здесь ks – кратность корня as (s = 1,...,l).
Определение. Нахождение многочлена
имеющего
все те же корни, что и f(x),
но кратности 1, называют отделением
кратных корней
Теорема
6. Чтобы у
отделить кратные корни, достаточно f(x)
разделить на (f(x),f’(x)):
g(x)=
.
Доказательство. Рассмотрим производную f /(x). По доказанному ранее для f /(x) числа as – ее корни кратности ks-1.
Поэтому
f
/(x)
делится на
для любого s
= 1,..,l.
Так как ((x
- as),(x
- ai))
=1 для is,
то f
/(x)
делится на
.
Тогда
f
/(x)=
,
где
q(x)
не делится на
для любого s
= 1,..,l,
ибо (ks
– 1) –
кратность корня as
многочлена f/(x).
Отсюда и из (3) следует что
(f(x),g(x)) = , и
.
Теорема доказана.
Замечание. Отделение корней иногда помогает найти корни f(x) (если g(x) имеет небольшую степень).
§9.Многочлены с действительными коэффициентами
Теорема
7. Если
комплексное (но не действительное) число
служит корнем многочлена f(x)
с действительными коэффициентами,
то корнем для f(x)
будет и сопряженное число
,
причем эти корни будут иметь одну и ту
же кратность.
Доказательство. Пусть многочлен с действительными коэффи-циентами f(x) = c0xn +c1xn-1+…+ cn-1x1 +cn имеет комплексный корень . Тогда
.
Мы знаем, что последнее равенство не нарушится, если в нем все числа заменить на сопряженные. Однако все коэффициенты сi, а также число 0, стоящее справа, будучи действительными, останутся при этой замене без изменения, и мы приходим к равенству
,
т. е.
.
Значит,
– также корень f(x).
Так
как
,
то многочлен f(x)
будет делиться на квадратный трехчлен
g(х)
=
=
,
(1)
коэффициенты
которого действительны. Пользуясь этим,
докажем, что корни
и
имеют в многочлене f(x)
одну и ту же
кратность.
Пусть
эти корни имеют, соответственно,
кратности k
и t
и пусть, например, k>t.
Тогда f(x)
=
=gt(x)q(x),
где q(x)=(x-a)k-ts(x),
(2)
причем
s(x)
не имеет корней a
и
.
Поэтому q(
)0.
(3)
Многочлен q(x), как частное двух многочленов с действительными коэффициентами, также имеет действительные коэффициенты. В силу (2) он имеет число своим корнем, тогда как число (в силу (3)) не является его корнем, в противоречие с доказанным выше. Отсюда следует, что k = t.
Таким образом, теперь можно сказать, что комплексные корни всякого многочлена с действительными коэффициентами попарно сопряжены. Отсюда и из разложения (1) из §8, в силу его единственности (следствие 1 теоремы 5) вытекает следующий результат:
Следствие 1. Всякий отличный от нуля многочлен f(x) с действительными коэффициентами представим, притом единственным способом (с точностью до порядка множителей), в виде произведения своего старшего коэффициента а0 и многочленов с действительными коэффициентами: линейных вида х-сi, соответствующих его действительным корням, и квадратных вида (1), соответствующих парам сопряженных комплексных корней.
Следствие 2. Всякий отличный от нуля многочлен f(x) с действительными коэффициентами представим (однозначно) в виде
f(x)=
,
где
–
все различные действительные корни
f(x),
,
где
(j
= 1,..,s)
– все различные недействительные корни
f(x).
Такое разложение называют каноническим разложением многочлена с действительными коэффициентами над полем R.
Справедливость этого утверждения вытекает из следствия 1.
Следствие 3. Число недействительных корней отличного от нуля многочлена с действительными коэффициентами всегда четно.
Следствие 4. Многочлен нечетной степени с действительными коэффициентами имеет хотя бы один действительный корень.