
- •Специальность менеджмент
- •Тема 1. Спецификация эконометрической модели.
- •Определение эконометрики
- •Пример решения эконометрической задачи
- •Спецификация эконометрической модели
- •Тема 2. Отбор факторов, включаемых в модель множественной регрессии.
- •2.2. Мультиколлинеарность
- •2.3. Методы включения факторов в модель
- •2. Отрицательное значение r(X,y) означает, что при увеличении х наблюдается тенденция уменьшения у,
- •4. Если коэффициент корреляции равен 0, то это означает, что между х и у нет линейной зависимости, но может быть нелинейная зависимость.
- •5. Корреляционным полем называется график совместного распределения х и у.
- •2.4. Метод шагового включения
- •3.1. Определение фиктивной переменной
- •3.2. Определение модели с переменной структурой
- •Тема 3. Фиктивные переменные.
- •3.3. Область использования фиктивной переменной
- •3.4.Пример использования фиктивной переменной
- •Тема 3. Фиктивные переменные.
- •3.4. Пример использования фиктивной переменной
- •Тема 4.Линейное уравнение множественной регрессии .
- •4.1. Общий вид уравнения множественной регрессии
- •4.3. Экономическая интерпретация коэффициентов линейного уравнения
- •4.4. Примеры экономической интерпретации коэффициентов линейного уравнения
- •Тема 5. Оценка параметров линейных уравнений регрессии
- •Тема 6. Предпосылки мнк, методы их проверки
- •6.1. Предпосылки мнк
- •6.2. Проверка первой, второй предпосылок мнк
- •6.3. Проверка третьей, четвертой предпосылок мнк
- •6.4. Проверка пятой предпосылки мнк
- •Тема 7. Свойства оценок параметров эконометрической модели, получаемых при помощи мнк
- •Тема 8. Обобщенный метод наименьших квадратов (омнк)
- •8.2. Анализ третьей и четвертой предпосылок мнк
- •8.3. Использование омнк при гетероскедастичных остатках
- •8.4. Использование омнк при наличии автокорреляции остатков
- •Тема 9. Оценка тесноты связи
- •9.4.2. Ложная корреляция временных рядов
- •Тема 9. Оценка тесноты связи
- •9.2. Свойства коэффициента корреляции
- •2. Отрицательное значение r(X,y) означает, что при увеличении X наблюдается тенденция уменьшения y,
- •4. Если коэффициент корреляции равен 0, то это означает, что между х и у нет линейной зависимости, но может быть нелинейная зависимость.
- •5. Корреляционным полем называется график совместного распределения х и у.
- •9.3. Предпосылки коэффициента корреляции
- •9.4. Виды ложной корреляции
- •9.5. Проверка статистической значимости коэффициента корреляции
- •Тема 10. Оценка качества подбора уравнения
- •10.1. Перечень показателей качества модели
- •10.2. Ошибка модели, выраженная в процентах, вычисляется по формуле:
- •10.3. Дисперсионный анализ регрессионной модели
- •Тема 11. Проверка статистической значимости эконометрической модели
- •Тема 12. Оценка значимости параметров эконометрической модели
- •12.1. Проверка статистической значимости параметров эконометрической модели
- •Шаг 3. Вычисляются фактические значения критерия Стьюдента
- •12.2. Прогнозирование
- •12.3. Доверительный интервал функции регрессии.
- •Тема 13. Нелинейные зависимости в экономике
- •Тема 14. Виды нелинейных уравнений регрессии
- •14.1Ограничения применения мнк
- •14.2Линейная относительно коэффициентов, переменных аддитивная модель
- •14.3Классификация нелинейных моделей
- •14.4Нелинейные модели, которые являются внутренне линейными
- •Тема 15. Линеаризация нелинейных моделей регрессии
- •15.4. Метод обращения и разложения в ряд Тейлора
- •Тема 16. Оценка качества нелинейных уравнений регрессии
- •Тема 17. Временные ряды данных: характеристики и общие понятия Определение временного ряда
- •Основные свойства экономического временного ряда
- •1). Текущее состояние экономической системы зависит от прошлых, настоящих и будущих значений переменных этой системы, влияет на будущие значения и не влияет на прошлые значения см. Рис.
- •Статистические характеристики временного ряда
- •Периодограмма
- •Тема 18. Структура временного ряда Структура временного ряда
- •Сезонная составляющая
- •Циклическая составляющая
- •Тема 19. Аддитивная и мультипликативная модели временных рядов Два вида моделей временных рядов
- •Правила выбора моделей временных рядов
- •Этапы построения модели временного ряда
- •Примеры построения моделей временных рядов
- •Тема 20. Модели стационарных и нестационарных временных рядов и их идентификация
- •20.1.Определение строго стационарных временных рядов
- •20.2.Проверка стационарности временных рядов
- •20.3.Модели стационарных временных рядов
- •1) Модели авторегрессии;
- •2) Модели скользящего среднего;
- •3) Модели авторегрессии и скользящего среднего.
- •2) |Φ|‹1 – условие, обеспечивающее обратимость смешанной модели.
- •20.4. Модели нестационарных временных рядов
- •Если линейная модель
- •Эконометристами были предложены несколько методов определения
- •- Вычисляются остатки модели
- •Тема 21. Общие понятия о системах уравнений, используемых в эконометрике Определение эндогенных переменных.
- •Тема 22. Классификация систем уравнений
- •Тема 23. Идентификация систем эконометрических уравнений
- •Тема 24. Методы оценки параметров систем одновременных уравнений: косвенный метод наименьших квадратов (кмнк) и двухшаговый метод наименьших квадратов (дмнк)
- •1) На основе структурной формы системы одновременных уравнений составляется её приведённая форма, все параметры которой выражены через структурные коэффициенты;
- •2) Приведённые коэффициенты каждого уравнения оцениваются обычным методом наименьших квадратов с помощью функции линейн;
- •3) На основе оценок приведённых коэффициентов системы одновременных уравнений определяются оценки структурных коэффициентов через приведённые уравнения.
- •Двухшаговый метод наименьших квадратов Расчет коэффициентов модели
- •На первом шаге устраняется зависимость у2t от еt с помощью уравнения приведенной системы одновременных уравнений
Тема 3. Фиктивные переменные.
3.1. Определение фиктивной переменной
Фиктивная переменная – качественная переменная, отражающая некоторые атрибутивные признаки (пол, образование, регион и т.п.) .
Чаще всего применяются бинарные фиктивные переменные, принимающие два значения, 0 и 1, в зависимости от определенного условия
3.2. Определение модели с переменной структурой
Модели называются моделями с переменной структурой, если в состав объясняемых переменных входят, как количественные, так и фиктивные факторы.
3.3. Область использования фиктивной переменной
Фиктивные переменные отражают неоднородность исследуемой статистической совокупности и используются для более качественного моделирования зависимостей в таких неоднородных объектах наблюдения.
В практике эконометрики часто используют фиктивные переменные для следующих целей:
1 – для учета влияния атрибутивных факторов: пол, образование, стиль управления, удовлетворенность потребителей, семейное положение, климатические условия, принадлежность к определенному региону, сезон, наличие сертификата на систему менеджмента качества по ГОСТ Р ИСО 9001-2008 и т. д.;
2 – для объяснения сильно выделяющихся значений зависимой переменной (выбросы);
3 – для учета влияния факторов, которые не вошли в модель;
4 – для повышения точности прогноза.
3.4. Пример использования фиктивной переменной
Пусть необходимо определить влияние некоторой качественной переменной z, принимающей два возможных значения. Обозначим эти возможные значения A и B для определенности.
Тогда такой переменной можно поставить в соответствие следующую фиктивную переменную
Пусть исходная модель имеет вид
Если добавить переменную d в модель, то получим
Тема 4.Линейное уравнение множественной регрессии .
4.1. Общий вид уравнения множественной регрессии
Линейная модель множественной регрессии для генеральной совокупности имеет вид:
Уi = α0 + α1 Х1i + α2 Х2i + ... + αm Хmi + εi,
где У- зависимая переменная (результативный признак);
Хji - независимые переменные (факторы),
i –. номер измерения;
αj - параметры регрессии, которые обозначаются греческими буквами;
j – порядковый номер фактора;
εi – случайное возмущение, которое отражает влияние тех факторов, которые не вошли в модель, ошибок наблюдений или измерений.
Существуют два вида множественной линейной регрессии: аддитивная и мультипликативная.
Аддитивная множественная линейная регрессия для выборочной совокупности, в которой вместо истинных значений параметров подставлены их оценки, имеет вид:
Yi = а0 + а1 Х1i + а2 Х2i + ... + аm Хmi + еi,
где а0, а1, а2 – называют коэффициентами и обозначают латинскими буквами.
Приводим мультипликативную многофакторную степенную модель:
Уi = а0 Х1iа1 Х2i а2... Хmi аmеi,
которая называется производственной моделью и носит название модели Кобба – Дугласа.