- •1. Физиологические функции крови. Состав крови и ее количество в организме человека
- •2. Функции эритроцитов. Количество эритроцитов в крови у человека в покое и при мышечной работе. Гемоглобин.
- •3. Функции лейкоцитов. Миогенный лейкоцитоз и его фазы
- •4. Изменения в крови при двигательной деятельности
- •6. Сердце и его физиологические свойства
- •7. Механические и звуковые явления при сокращении сердца. Артериальное давление и способы его определения. Артериальный пульс
- •8. Систолический и минутный объём крови в покое и при физической нагрузке
- •9. Нервная и гуморальная регуляция сердца
- •15. Дыхание при физической работе
- •16. Пищеварение в желудке. Состав и свойства желудочного сока
- •17. Пищеварение в двенадцатиперстной кишке. Состав сока поджелудочной железы и механизм его выделения
- •19. Влияние мышечной работы на пищеварение
- •20. Обмен белков и его регуляция
- •21. Обмен липидов и его регуляция
- •22. Обмен углеводов и его регуляция
- •24. Уровни энергетических трат в организме. Основной обмен, обмен в состоянии относительного покоя и при физической работе
- •28. Щитовидная железа. Последствия её гипер и гипофункции
- •29. Гормоны поджелудочной железы и их роль в регуляции углеводного обмена
- •30. Гормоны коркового вещества надпочечников и их роль в адаптации организма к неблагоприятным условиям окружающей среды
- •31. Гормоны мозгового вещества надпочечников
- •32. Физиологическое значение гормонов гипофиза
- •33. Понятие о нервно-мышечном аппарате и двигательной единице
- •34. Проведение возбуждения через нервно- мышечные синапсы
- •35. Теория мышечного сокращения
- •36. Энергетика мышечного сокращения
- •37. Аэробный и анаэробный пути окисления углеводов
- •38. Изотонический, изометрический и ауксотонический режим деятельности мышц
- •39. Сила мышцы. Факторы, влияющие на силу мышцы
- •40. Основные функции центральной нервной системы (цнс). Понятие о рефлексе и рефлекторной дуге.
- •41. Координация деятельности центральной нервной системы. Иррадиация и концентрация нервных процессов
- •42 Торможение в центральной нервной системе. Сеченовское торможение
- •43. Функции спинного мозга
- •44. Функции продолговатого мозга
- •Функции продолговатого мозга
- •Функции промежуточного мозга
- •47. Функции мозжечка
- •48. Строение и функции коры больших полушарий головного мозга
- •49. Первичные, вторичные и третичные поля коры
- •50. Строение и функции вегетативной нервной системы
- •51. Безусловные и условные рефлексы и их отличия
- •52. Механизм образования условных рефлексов
- •53. Виды условных рефлексов и их биологическое значение
- •54. Условные рефлексы первой и второй сигнальной систем
- •55. Внешнее и внутреннее торможение условных рефлексов
- •56. Типы высшей нервной деятельности
- •57. Строение и функции зрительного анализатора. Рефракция и аккомодация глаза.
- •58. Слуховой анализатор. Теория слуха
- •59. Функции вестибулярного анализатора
- •60. Двигательный анализатор и его роль
- •1. Какова средняя продолжительность жизни эритроцитов и лейкоцитов
- •2. Назовите фазы миогенного лейкоцитоза
- •3. Какое количество крови находится в кровяных депо в покое
- •4. Назовите тоны сердца. Какой тон возникает в начале систолы сердца и какой в начале диастолы
- •5. Назовите величину систолического или ударного объема крови
- •6. Назовите величину минутного объема крови в покое и при напряженной мышечной работе у спортсменов
- •7. Какое влияние оказывают симпатические нервы на сердце
- •8. Какое влияние оказывают блуждающие нервы на сердце
- •9. Какие гормоны усиливают и учащают деятельность сердца
- •10. Какие центры осуществляют регуляцию тонуса сосудов
- •11. Какова частота дыхания у человека в покое за 1 мин
- •12. Назовите минутный объем дыхания в покое и при напряженной мышечной работе
- •13. Какой центр регулирует дыхание
- •14. Какие ферменты содержит желудочный сок
- •15. Назовите фазы выделения желудочного сока
- •16. Какие питательные вещества откладываются в запас, а какие не откладываются
- •17. Назовите основные функции печени
- •18. В какой форме и в каких органах углеводы откладываются в запас
- •19. Назовите депо жира в организме
- •20. Какие гормоны поджелудочной железы регулируют углеводный обмен
- •21. Условные рефлексы первой и второй сигнальной систем
- •22. Влияние инсулина и глюкагона на углеводный обмен
- •24. Какие гормоны надпочечников адаптируют организм человека к стрессовым ситуациям
- •25. Назовите основные сократительные белки мышц
- •26. Назовите типы рабочей гипертрофии мышц
- •28. Рассчитайте величину минутного ударного объёма крови в покое, если частота сердечных сокращений равна 70 уд/мин, а систолический объём крови - 80 мл
- •29. Восходящее влияние ретикулярной формации
- •30. Нисходящее влияние ретикулярной формации
26. Назовите типы рабочей гипертрофии мышц
Можно выделить два крайних типа рабочей гипертрофии мышечных волокон – саркоплазматический и миофибриллярный. Саркоплазматическая рабочая гипертрофия – это утолщение мышечных волокон за счет преимущественного увеличения объема саркоплазмы, т. е. несократительной их части. Гипертрофия этого типа происходит за счет повышения содержания несократительных (в частности, митохондриальных) белков и метаболических резервов мышечных волокон: гликогена, безазотистых веществ, креатинфосфата, миоглобина и др. Значительное увеличение числа капилляров в результате тренировки также может вызывать некоторое утолщение мышцы.
27. Где происходит замыкание условных рефлексов
Условные рефлексы образуются при возникновении в коре полушарий головного мозга двух очагов возбуждения: один – в ответ на действие условного, а другой – на действие безусловного раздражителя. При сочетании действия этих раздражителей между возникшими очагами возбуждения устанавливается временная связь, которая от опыта к опыту становится все более прочной. Такую связь в коре полушарий мозга И.П. Павлов называл замыканием и им объяснил механизм образования условного рефлекса.
28. Рассчитайте величину минутного ударного объёма крови в покое, если частота сердечных сокращений равна 70 уд/мин, а систолический объём крови - 80 мл
70*80=5600 мл.
29. Восходящее влияние ретикулярной формации
раздражение ретикулярной формации (заднего, среднего и промежуточного мозга) сказывается на деятельности высших отделов головного мозга, в частности коры большого мозга, обеспечивая переход ее в активное состояние. Это положение подтверждается данными многочисленными экспериментальными исследованиями и клиническими наблюдениями. Так, если животное находится в состоянии сна, то прямое раздражение ретикулярной формации (особенно варолиева моста) через введенные в эти структуры электроды вызывает поведенческую реакцию пробуждения животного. При этом на ЭЭГ возникает характерное изображение - изменение альфа-ритма бета-ритмом, т.е. фиксируется реакция десинхронизации или активизации. Указанная реакция не ограничивается определенным участком коры большого мозга, а охватывает большие ее массивы, т.е. носит генерализованный характер. При разрушении ретикулярной формации или выключении ее восходящих связей с корой большого мозга животное впадает в сноподобное состояние, не реагирует на световые и обонятельные раздражители, фактически не вступает в контакт с внешним миром. То есть конечный мозг прекращает активно функционировать. Таким образом, ретикулярная формация ствола головного мозга выполняет функции восходящей активирующей системы мозга, которая поддерживает на высоком уровне возбудимость нейронов коры большого мозга.
30. Нисходящее влияние ретикулярной формации
При раздражении ретикулярной формации заднего мозга (особенно гигантоклеточной ядра продолговатого мозга и ретикулярного ядра моста, где принимают начало ретикулоспинальному пути), возникает торможение всех спинальных двигательных центров (сгибательных и разгибательных). Это торможение очень глубокое и продолжительное. Такое положение в естественных условиях может наблюдаться при глубоком сне. Наряду с диффузными тормозящими влияниями, при раздражении определенных участков ретикулярной формации выявляется диффузное влияние, которое облегчает деятельность спинальной двигательной системы. Ретикулярная формация играет важную роль в регуляции деятельности мышечных веретен, изменяя частоту разрядов, поступающие гамма-эфферентными волокнами к мышцам. Таким образом модулируется обратная импульсация в них.
