
- •Курс лекций по дисциплине «Электрический привод»
- •1 Механическая часть силового канала электропривода. Математическое описание. Динамическое моделирование механической части силового канала электропривода
- •1.1 Механическая часть силового канала электропривода. Обобщенная графическая модель (совместная механичная характеристика электропривода)
- •1.2 Двухмассовая модель, как объект управления (аналоговый вариант)
- •1.2.1 Динамическая модель двухмассовой системы в переменных «входы-выходы». Структурная схема динамической модели
- •1.2.2 Структурная схема двухмассовой механической системы, как звена входящую в более сложную систему. Преобразования структурных схем
- •1.2.3 Метод пространства состояния. Представление двухмассовой системы в переменных состояния
- •1.3 Одномассовая механическая модель силового канала электропривода
- •1.3.1 Одномассовая механическая модель как объект управления (аналоговый вариант). Динамическая модель одномассовой механической системы в переменных «входы-выходы»
- •2.1 Обобщенная электрическая машина. Координатные и фазные преобразования
- •2.2 Дпт с нв. Основные уравнения. Механические характеристики
- •2.2.1 Электромеханические характеристики дпт с нв в двигательном режиме
- •2.2.2 Механические характеристики дпт с нв при пуске
- •2.2.3 Механические характеристики дпт с нв в тормозных режимах
- •1) Рекуперативное;
- •2) Противовключением;
- •3) Динамическое.
- •Рекуперативное торможение
- •Торможение противовключением
- •Динамическое торможение
- •2.2.4 Дпт с нв, как объект управления. Динамическая модель дпт с нв в переменных «входы-выходы». Аналоговый вариант
- •2.2.5 Энергетические режимы в эп с дпт с нв
- •1. Режим хх.
- •4. Режим противовключения
- •2.3 Механические характеристики двигателей последовательного возбуждения
- •2.3.1 Механические характеристики дпт пв в двигательном режиме
- •2.3.2 Пусковой режим двигателя последовательного возбуждения
- •2.3.3 Тормозные режимы дпв. Механические характеристики дпв в тормозном режиме
- •2.4 Дпт смешанного возбуждения
- •2.5 Ад. Механические характеристики ад при различных режимах работы
- •2.5.1 Построение механических характеристик с использованием формулы Клосса
- •2.5.2 Пуск ад
- •2.5.3 Тормозные режимы ад. Механические характеристики в тормозном режиме
- •Рекуперативное торможение
- •Режим противовключения. Торможение противовключением
- •Динамическое торможение
- •2.5.4 Моделирование эп с ад. Асинхронный двигатель, как объект управления. Динамическая модель ад в переменных «входы - выходы»
- •2.5.5 Динамическая модель ад в переменных состояния. Математическое описание обобщенной асинхронной машины
- •2.5.6 Преобразователи координат и фаз
- •2.5.7 Асинхронная машина с короткозамкнутым ротором
- •2.5.7.1 Анализ ад с кзр в неподвижной системе координат
- •2.5.7.2 Анализ ад с кзр во вращающейся системе координат
- •2.6 Синхронный электродвигатель. Механические характеристики сд в различных режимах работы. Механические характеристики сд в двигательном режиме. Угловая характеристика сд
- •2.6.1 Пуск сд. Механические характеристики в пусковом режиме
- •2.6.2 Тормозные режимы сд. Механические характеристики сд в тормозных режимах
- •2.6.3 Синхронный эд, как объект управления. Динамические модели синхронного эд и синхронный эп в переменных «входы-выходы»
- •3 Переходные процессы в эп
- •3.1 Электромеханические переходные процессы и их анализ
- •3.1.1 Решение уравнения движения при постоянном динамическом моменте
- •3.1.2 Решение уравнения движения при линейно изменяющемся динамическом моменте
- •3.1.3 Решение уравнения движения при нелинейно изменяющемся динамическом моменте и при постоянном моменте сопротивления
- •3.1.4 Решение уравнения при нелинейно-изменяющемся динамическом моменте и при изменяющемся моменте сопротивления
- •3.2 Анализ электромеханических переходных процессов
- •3.2.1 Нагрузочные диаграммы эп
- •1) Непрерывные
- •3.2.2 Расчет и построение нагрузочных диаграмм эп
- •3.2.3 Анализ нагрузочных диаграмм эп
- •3.3 Тепловые переходные процессы в эп
- •3.3.1 Уравнение теплового баланса эп
- •3.3.2 Постоянная времени нагрева
- •3.3.3 Допустимое превышение температуры двигателя. Классы изоляции
- •3.4. Динамическая тепловая модель эд в переменных «входы-выходы»
- •3.5 Выбор мощности эд. Номинальные режимы работы эп по нагреву
- •3.5.1 Выбор мощности эд для различных режимов работы
- •1. Выбор эд по нагреву.
- •2. Проверка по допустимой механическое перегрузке.
- •3. По возможности запуска.
- •3 Этап: Поверка по возможности запуска.
- •3.5.2 Выбор мощности эд для кратковременного режима работы
- •3.5.3 Выбор мощности эд для повторно-кратковременного режима работы
- •4 Регулирование «координат» эп
- •Регулирование скорости вращения в эп
- •4.1 Регулирование скорости дпт с нв
- •2. Регулирование магнитным потоком
- •3. Регулирование напряжением на зажимах якоря
- •Регулирование скорости вращения дпт с нв изменением напряжения подводимого к якорю
- •4.2 Регулирование скорости вращения двигателя постоянного тока с последовательным возбуждением
- •3. Регулирование изменением магнитного потока
- •3.1. Регулирование скорости дпт пв шунтированием оя.
- •3.2. Регулирование скорости шунтированием ов.
- •4.3 Регулирование скорости вращения асинхронных двигателей
- •4.3.1 Регулирование скорости вращения ад изменением действующего значения напряжения, подводимого к статору
- •4.3.2 Регулирование скорости вращения ад изменением числа пар полюсов двигателя
- •4.3.3 Частотное регулирование скорости вращения ад. Принципы и законы частотного регулирования
- •1.Электромашинный пч
- •Особенности частотного регулирования сд
- •4.3.4 Регулирование скорости вращения ад введением добавочного эдс в цепи ротора (каскадное регулирование)
- •Классификация схем каскадного регулирования
- •5 Энергетическая эффективность эп
- •Случай разноправленного потока энергии
- •5.2 Обобщенный критерий энергетической эффективности
- •5.3 Коэффициент мощности
- •6 Надёжность эп. Основные понятия, критерии надёжности
- •6.1 Показатели надёжности
- •6.2 Расчёт показателей надёжности
1.3 Одномассовая механическая модель силового канала электропривода
Если считать, что жесткость механической связи между 2-мя вращающимися массами бесконечно велика, то можно двухмассовую механическую модель представить в виде одномассовой.
Тогда:
,
,
,
.
Рис.9 Одномассовая механическая модель ЭП
Тогда система уравнений, описывающая двухмассовую механическую модель, сведётся к одному уравнению:
(11)
В этом уравнении левая часть может быть
графически представлена в виде 2-х
функций
и
,
при этом, если строго следовать физическому
смыслу этих функций, то
-
(статически-механическая характеристика
ЭМП) будет располагаться в 1-м квадранте
координатной плоскости, а функция
,
которая называется статическая
механическая характеристика механизма,
будет располагаться во 2-м квадранте.
В этом случае нахождение точки статического
равновесия, а именно равенства
,
окажется невозможным. Поэтому обе
характеристики для удобства анализа
располагают в одном квадранте, чаще во
2-м (см. рис.1). Тогда уравнение (11) будет
иметь вид арифметического уравнения.
При анализе механической части с помощью этого уравнения часто возникает проблема, связанная с недостатком каталожных данных о суммарном моменте инерции вращающихся частей, поэтому используют уравнение (11), записываемое в инженерных координатах.
В уравнении (11):
-
момент инерции равен произведению массы
на квадрат приведенного радиуса инерции:
.
Тогда уравнение (11) примет вид:
Если представить:
,
где
-
приведенный диаметр инерции, а массу
представить через силу тяжести и
ускорение свободного падения
,
то уравнение примет вид:
(12)
Уравнения (11), (12) являются математическим описанием одномассовой механической модели, и называются, соответственно:
(11) - уравнение движения в классических координатах (классическое, основное);
(12) - уравнение движения в инженерных координатах.
В уравнении (12) выражение
принято называть маховым моментом.
1.3.1 Одномассовая механическая модель как объект управления (аналоговый вариант). Динамическая модель одномассовой механической системы в переменных «входы-выходы»
Представим одномассовую модель механической системы в виде динамической модели в переменных «входы-выходы», имея в виду то, что система имеет следующее математические описание:
.
Запишем уравнение в операторной форме:
.
Водные и выходные переменные:
Рис.10 Структурная схема одномассовой механической модели
Передаточная функция звена:
.
2 ЭЛЕКТРОМЕХАНИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ. Уравнения, описывающие электромеханические преобразователи. Механические характеристики электромеханических преобразователей в различных режимах их работы. Электромеханические преобразователи как объект управления. Энергетические соотношения в электромеханических преобразованиях
Под термином «электромеханический преобразователь» в дальнейшем будем подразумевать:
- ДПТ с НВ – двигатель постоянного тока с независимым возбуждением;
- АД – асинхронный двигатель;
- СД – синхронный двигатель;
- ДПТ ПВ - двигатель постоянного тока последовательного возбуждения.