
- •1 Определение понятия «жизнь». Гипотезы происхождения жизни. Основные этапы возникновения и развития жизни. Субстрат жизни.
- •2. Фундаментальные свойства живой материи
- •Обмен веществ (метаболизм)
- •Самовоспроизведение (репродукция)
- •Индивидуальное развитие организмов
- •4 Эволюционно-обусловленные иерархические уровни организации живого. Элементарная эволюционная единица и элементарное эволюционное явление на каждом из уровней.
- •5 Клетка – элементарная биологическая система. Клеточная теория как доказательство единства всего живого. Основные положения клеточной теории. Современное состояние клеточной теории.
- •6 Клетка как открытая система. Организация потоков вещества, энергии и информации в клетке. Специализация и интеграция клетки многоклеточного организма.
- •7 Структурно-функциональная организация эукариотических клеток. Компартментация как способ изоляции разнонаправленных процессов (химических реакций) внутри клетки.
- •8 Строение эукариотической клетки: поверхностный аппарат, протоплазма (ядро и цитоплазма).
- •9 Поверхностный аппарат клетки. Строение и функции. Биологические мембраны. Их строение и функции. Транспорт веществ: активный и пассивный.
- •10 Протоплазма. Организация и функции. Роль изменения агрегатного состояния цитоплазмы в жизнедеятельности клетки (золь–гель переходы). Понятие о биоколлоиде.
- •11 Ядро как основной регуляторный компонент клетки. Его строение и функции.
- •12 Двумембранные органоиды (митохондрии, пластиды). Их строение и функции.
- •13 Одномембранные органоиды (эпс, аппарат Гольджи, лизосомы). Их строение и функции.
- •Транспортная функция. По полостям эпс синтезированные вещества перемещаются в любое место клетки.
- •Разрушают старые, поврежденные, избыточные органоиды. Ращепление органоидов может происходить и во время голодания клетки.
- •14 Немембранные органоиды (микротрубочки, клеточный центр, рибосомы). Их строение и функции.
- •15 Включения. Классификация, состав и значение.
- •16 Ассимиляция и диссимиляция как основа самообновления биологических систем. Определение, сущность, значение.
- •17 Дезоксирибонуклеиновая кислота, ее строение и свойства. Мономеры днк. Способы соединения нуклеотидов. Комплементарность нуклеотидов. Антипараллельные полинуклеотидные цепи. Репликация и репарация.
- •19 Рибонуклеиновая кислота, ее строение и свойства. Отличия рнк от днк. Типы рнк, локализация в клетке, функции.
- •22 Организация наследственного материала у прокариот. Экспрессия гена. Регуляция работы генов у прокариот.
- •26 Биосинтез белка. Эпицикл трансляции: инициация, элонгация, терминация.
- •27 Оперон и транскриптон как единицы транскрипции. Промотор. Оператор. Терминатор. Репрессор. Индуктор. Их характеристики и функции.
- •28 Экспрессия генов в процессе биосинтеза белка. Регуляция экспрессии генов у про- и эукариот. Гипотеза «один ген — один фермент», ее современная трактовка.
- •30 Митотический цикл. Основные события периодов интерфазы. Содержание и значение фаз митоза. Биологическое значение митоза.
- •31 Эндомитоз, полиплоидия и политения. Амитоз. Примеры и значение.
- •37 Сперматогенез и овогенез. Цитологическая и цитогенетическая характеристики. Морфофизиологические особенности половых клеток.
- •41 Организация наследственного материала у прокариот и эукариот. Генный, хромосомный и геномный уровень организации наследственного материала. Строение гена у прокариот и эукариот.
- •44 Хромосомы — структурные компоненты ядра. Строение, химический состав, функции. Классификации хромосом. Правила хромосомных наборов.
- •Классификация хромосом
- •46 Основные понятия генетики. Наследственность и наследование, изменчивость. Материальные носители генетической информации – гены. Генотип и геном. Фенотип и фен. Признак. Норма реакции.
- •51 Взаимодействие неаллельных генов (комплементарность, эпистаз и полимерия). Доминантный и рецессивный эпистаз.
- •52 Плейотропное действие гена. Первичная и вторичная плейотропия. Летальные гены. Примеры.
- •54 Классификация хромосом. Генетическая карта хромосом.
- •57 Генетика человека и медицинская генетика, их цели и задачи. Человек как специфический объект генетических исследований.
- •Доминантные и рецессивные признаки у человека
- •Мутантный аллель → измененный первичный продукт → цепь биохимических процессов в клетке → органы → организм
- •63 Фенотипическая (определённая, групповая, ненаследственная) или модификационная изменчивость. Ее значение в онтогенезе и филогенезе. Фенокопии и генокопии.
- •Мутантный аллель → измененный первичный продукт → цепь биохимических процессов в клетке → органы → организм
- •67 Ядерная и цитоплазматическая наследственность. Закономерности наследования признаков, контролируемых ядерными и цитоплазматическими генами.
- •68 Генетическая инженерия, ее задачи, методы, возможности. Значение генетической инженерии в решении продовольственной проблемы, лечении наследственных заболеваний.
- •1 Жизненные циклы организмов. Онтогенез, его типы. Прямое и непрямое развитие. Периодизация онтогенеза.
- •3 Дробление. Характеристика дробления. Основные типы яйцеклеток по расположению желтка. Связь строения яйцеклетки с типом дробления. Бластомеры и эмбриональные клетки. Строение и типы бластул.
- •4 Общая характеристика эмбрионального развития: гаструляция, гисто- и органогенез.
- •5 Гаструляция. Способы гаструляции. Строение разных типов гаструл.
- •6 Гисто- и органогенез: нейруляция; формирование комплекса осевых органов и мезодермы.
- •7 Теория зародышевых листков. Производные зародышевых листков.
- •8 Провизорные органы зародышей позвоночных или зародышевые оболочки. Взаимоотношения материнского организма и плода. Влияние вредных привычек родителей (употребление алкоголя и др.) на развитие плода.
- •12 Роль наследственности и среды в онтогенезе. Критические периоды развития. Гетерохронный характер развития.
- •13 Постэмбриональное развитие как процесс реализации генетических программ организма. Периодизация постэмбрионального развития. Постнатальная периодизация онтогенеза человека.
- •15 Регенерация как свойство живого: способность к самообновлению и восстановлению. Типы регенерации. Биологическое и медицинское значение проблемы регенерации.
- •17 Физиологическая регенерация: сущность, биологическое значение, уровни. Влияние факторов среды на регенерацию.
- •19 Проблема трансплантации органов и тканей. Ауто-, алло– и гетеротрансплантация. Тканевая несовместимость и пути ее преодоления.
- •20 Процесс эволюции. История становления эволюционной идеи. Сущность представлений ч. Дарвина о механизмах органической эволюции. Современный период синтеза дарвинизма и генетики.
- •22 Определение популяции. Ее характеристики. Генетическая структура популяции. Правило Харди-Вайнберга. Генетический полиморфизм, генетический груз.
- •26 Макро- и микроэволюция. Характеристика механизмов и основных результатов.
- •27 Типы, формы и правила эволюции групп. Принципы эволюции органов.
- •28 Эволюция покровов тела и скелета позвоночных. Онтофилогенетически обусловленные аномалии и пороки развития у человека.
- •29 Эволюция пищеварительной системы позвоночных. Онтофилогенетически обусловленные аномалии и пороки развития у человека.
- •30 Эволюция кровеносной системы позвоночных. Онтофилогенетически обусловленные аномалии и пороки развития у человека.
- •31 Эволюция дыхательной системы позвоночных. Онтофилогенетически обусловленные аномалии и пороки развития у человека.
- •Эволюция головного мозга.
- •Тазовая, или вторичная почка.
- •35 Индивидуальное и историческое развитие. Биогенетический закон. Онтогенез как основа филогенеза. Ценогенезы и филэмбриогенезы.
- •Онтогенез — основа филогенеза
- •Соответствие строения органов выполняемым функциям
- •39 Органический мир как результат процесса эволюции. Возникновение жизни на Земле (основные гипотезы).
- •40 Эволюция жизни на Земле. Геохронологическая шкала. Филогенетические связи в природе. Время появления крупнейших систематических групп позвоночных. Характеристика и систематика типа Хордовые.
- •41 Прогрессивный характер эволюции. Неограниченный прогресс. Биологический и морфофизиологический прогресс и регресс.
- •42 Положение человека в системе животного мира. Качественное своеобразие человека.
- •Обычно выделяют следующие этапы эволюции человека:
- •5.Неоантропы (новые люди) Человек разумный – Homo sapiens (кроманьонец)
- •44 Понятие о расах и видовое единство человечества. Современная классификация и распространение человеческих рас. Доказательства видового единства человечества: идентичность кариотипа и метисация.
- •46 Методы изучения антропогенеза. Сущность методов. Результаты применения методов.
- •47 Значение изменений генома в происхождении и дальнейшей эволюции человека.
- •48 Прогрессивная эволюция гоминид и происхождение человека.
37 Сперматогенез и овогенез. Цитологическая и цитогенетическая характеристики. Морфофизиологические особенности половых клеток.
Гаметогенез — процесс образования яйцеклеток (овогенез) и сперматозоидов (сперматогенез) —подразделяется на ряд стадий.
В стадии размножения диплоидные клетки, из которых образуются гаметы, называют сперматогониями и овогониями. Эти клетки осуществляют серию последовательных митотических делений, в результате чего их количество существенно возрастает, но в объёме не изменяются. Сперматогонии размножаются на протяжении всего периода половой зрелости мужской особи. Размножение овогоний приурочено главным образом к периоду эмбриогенеза. У человека в женском организме этот процесс наиболее интенсивно протекает в яичниках между 2-м и 5-м месяцами внутриутробного развития. К 7-му месяцу большая часть овоцитов входит в профазу I мейоза.
Так как способом размножения клеток-предшественниц женских и мужских гамет является митоз, то овогоний и сперматогонии, как и все соматические клетки, характеризуются диплоидностью. Если в одинарном, гаплоидном наборе число хромосом обозначить как п, а количество ДНК — как с, то генетическая формула клеток в стадии размножения соответствует 2п2с до S-периода и 2n4c после него.
На стадии роста происходит увеличение клеточных размеров и превращение мужских и женских половых клеток в сперматоциты и овоциты I порядка, причем последние достигают больших размеров, чем первые. Одна часть накапливаемых веществ представляет собой питательный материал (желток в овоцитах), другая — связана с последующими делениями. Важным событием этого периода является репликация ДНК при сохранении неизменным числа хромосом. Последние приобретают двунитчатую структуру, а генетическая формула сперматоцитов и овоцитов I порядка приобретает вид 2n4с.
Основными событиями стадии созревания являются два последовательных деления: редукционное и эквационное, которые вместе составляют. После первого деления образуются сперматоциты и овоциты II порядка (формула n2с), а после второго — сперматиды и зрелая яйцеклетка (формула пс).
В результате делений на стадии созревания каждый сперматоцит I порядка дает четыре сперматиды, тогда как каждый овоцит I порядка — одну полноценную яйцеклетку и редукционные тельца, которые в размножении не участвуют. Благодаря этому в женской гамете концентрируется максимальное количество питательного материала — желтка.
Процесс сперматогенеза завершается стадией формирования, или спермиогенеза. Ядра сперматид уплотняются вследствие сверхспирализации хромосом, которые становятся функционально инертными. Пластинчатый комплекс перемещается к одному из полюсов ядра, образуя акросомный аппарат, играющий большую роль в оплодотворении. Центриоли занимают место у противоположного полюса ядра, причем от одной из них отрастает жгутик, у основания которого в виде спирального чехлика концентрируются митохондрии. На этой стадии почти вся цитоплазма сперматиды отторгается, так что головка зрелого сперматозоида практически ее лишена.
Типы яйцеклеток:
Количество желтка-
Олиголецетальные (ланцетник)
Мезолецетальные (амфибии)
Полилецетальные (рыбы, птицы)
Месторасположение-
Изолецетальные (расположен диффузно, равномерно)
Телолецетальные ( с умеренным количествам желтка на нижнем вегетативном полюсе)
Резко телолецетальные (с большим количествам желтка, занимает всю яйцеклетку, кроме верхнего полюса)
Центролецетальные (желтка немного, но плотно в центре).
38 Оплодотворение. Полиэмбриония. Половой диморфизм. Гермафродитизм. Гермафродитизм как патологическое состояние у человека.
Оплодотворение — это процесс слияния половых клеток. Образующаяся в результате оплодотворения диплоидная клетка — зигота — представляет собой начальный этап развития нового организма.
Процесс оплодотворения складывается из трех последовательных фаз: а) сближения гамет; б) активации яйцеклетки; в) слияния гамет, или сингамии.
Сближение сперматозоида с яйцеклеткой обеспечивается совокупностью неспецифических факторов, повышающих вероятность их встречи и взаимодействия. К ним относят скоординированность наступления готовности к оплодотворению у самца и самки, поведение самцов и самок, обеспечивающее совокупление и осеменение, избыточную продукцию сперматозоидов, крупные размеры яйцеклетки, а также вырабатываемые яйцеклетками и сперматозоидами химические вещества, способствующие сближению и взаимодействию половых клеток. Эти вещества, называемые гамонами (гормоны гамет), с одной стороны, активируют движение сперматозоидов (гиногамоны I), а с другой — их склеивание (гиногамоны II). В особой структуре сперматозоида — акросоме —локализуются протеолитические ферменты. У млекопитающих большое значение имеет пребывание сперматозоидов в половых путях самки, в результате чего мужские половые клетки приобретают оплодотворяющую способность (капацитация), т.е. способность к акросомной реакции.
В момент контакта сперматозоида с оболочкой яйцеклетки происходит акросомная реакция, во время которой под действием протеолитических ферментов акросомы яйцевые оболочки растворяются. Далее плазматические мембраны яйцеклетки и сперматозоида сливаются и через образующийся вследствие этого цитоплазматический мостик цитоплазмы обеих гамет объединяются. Затем в цитоплазму яйца переходят ядро и центриоль сперматозоида, а мембрана сперматозоида встраивается в мембрану яйцеклетки. Хвостовая часть сперматозоида у большинства животных тоже входит в яйцо, но потом отделяется и рассасывается, не играя какой-либо роли в дальнейшем развитии.
2. В результате контакта сперматозоида с яйцеклеткой происходит ее активация. Она заключается в сложных структурных и физико-химических изменениях. Благодаря тому что участок мембраны сперматозоида проницаем для ионов натрия, последние начинают поступать внутрь яйца, изменяя мембранный потенциал клетки. Затем в виде волны, распространяющейся из точки соприкосновения гамет, происходит увеличение содержания ионов кальция, вслед за чем также волной растворяются кортикальные гранулы. Выделяемые при этом специфические ферменты способствуют отслойке желточной оболочки; она затвердевает, это оболочка оплодотворения. Все описанные процессы представляют собой так называемую кортикальную реакцию. Одним из значений кортикальной реакции является предотвращение полиспермии, т.е. проникновения в яйцеклетку более одного сперматозоида. У млекопитающих кортикальная реакция не вызывает образования оболочки оплодотворения, но суть ее та же.
Активация яйцеклетки завершается началом синтеза белка на трансляционном уровне, поскольку мРНК, тРНК, рибосомы и энергия были запасены еще в овогенезе. Активация яйцеклетки может начаться и протекать до конца без ядра сперматозоида и без ядра яйцеклетки, что доказано опытами по энуклеации зиготы.
3. Яйцеклетка в момент встречи со сперматозоидом обычно находится на одной из стадий мейоза, заблокированной с помощью специфического фактора. У большинства позвоночных этот блок осуществляется на стадии метафазы II; у многих беспозвоночных, а также у трех видов млекопитающих (лошади, собаки и лисицы) блок происходит на стадии диакинеза. В большинстве случаев блок мейоза снимается после активации яйцеклетки вследствие оплодотворения. В то время как в яйцеклетке завершается мейоз, ядро сперматозоида, проникшее в нее, видоизменяется. Оно принимает вид интерфазного, а затем профазного ядра. За это время удваивается ДНК и мужской пронуклеус получает количество наследственного материала, соответствующего п2с, т.е. содержит гаплоидный набор редуплицированных хромосом.
Ядро яйцеклетки, закончившее мейоз, превращается в женский пронуклеус, также приобретая п2с. Оба пронуклеуса проделывают сложные перемещения, затем сближаются и сливаются (синкарион), образуя общую метафазную пластинку. Это, собственно, и есть момент окончательного слияния гамет — сингамия. Первое митотическое деление зиготы приводит к образованию двух клеток зародыша (бластомеров) с набором хромосом 2n2c в каждом.
Полиэмбриония- способ бесполого размножения организмов, когда идет развитие более одного зародыша из одной зиготы у животных или образование нескольких зародышей в одном семени у растений.
Слово происходит от греческого «poly» — много и «embrion» — зародыш.
У животных различают специфическую (свойственную данному виду) полиэмбрионию, и спорадическую, или случайную. Специфическая полиэмбриония встречается у животных различных системаческих групп (мшанок, насекомых, броненосцев и т. д.)
Её биологический смысл заключается в увеличении числа потомков, развивающихся из одной оплодотворенной яйцеклетки.
Спорадическая полиэмбриония вызвана воздействием случайных факторов и встречается у многих видов животных, в том числе у человека. В результате полиэмбрионии развиваются два организма, абсолютно идентичных по генотипам, но имеющих различия в фенотипе (последствия воздействия среды).
Половой диморфизм- анатомические различия между самцами и самками одного и того же биологического вида, исключая различия в строении половых органов. Половой диморфизм может проявляться в различных физических признаках:
Размер. У млекопитающих и многих видов птиц самцы более крупные и тяжёлые, чем самки. У земноводных и членистоногих самки, как правило, крупнее самцов.
Волосяной покров. Борода у мужчин, грива у львов или бабуинов.
Окраска. Цвет оперения у птиц, особенно у утиных.
Кожа. Характерные наросты или дополнительные образования, такие как рога у оленевых, гребешок у петухов.
Зубы. Бивни у самцов индийского слона, более крупные клыки у самцов моржей и кабанов.
Некоторые животные, прежде всего рыбы, демонстрируют половой диморфизм только во время спаривания.
Гермафродитизмом называют состояние, при котором у живого организма проявляются анатомические и/или физиологические признаки обоих полов.
Само слово «гермафродит» происходит из греческой мифологии. Так, по легендам, звали сына двух богов – Гермеса и Афродиты. В пятнадцатилетнем возрасте он влюбился в нежно любившую его Салмакиду и, по обоюдной просьбе молодых людей, боги соединили их в одно существо.
У некоторых растений и животных гермафродитизм является естественным состоянием. У людей гермафродитизм относится к патологиям развития, которые могут быть обусловлены генетически или возникать при нарушениях внутриутробного развития (в том числе, при заболеваниях матери во время беременности или влиянии на плод сверхдоз гормонов или других факторов).
Гермафродитизм у людей встречается достаточно редко. Иногда о гермафродитизме говорят при некоторых генетических нарушениях, которые сопровождаются слабо развитыми первичными или вторичными половыми признаками.
Различают истинный и ложный гермафродитизм у людей.
При истинном гермафродитизме в организме одновременно присутствуют и женские и мужские половые хромосомы. В норме все или практически все клетки мужского организма имеют кариотип (хромосомный набор) 46ХУ, а женского – 46ХХ. Именно наличие У-хромосомы определяет развитие внутренних и наружных половых органов по мужскому типу.
При истинном гермафродитизме часть клеток имеют мужской кариотип, а часть женский. Вследствие этого половые железы имеют признаки и мужского и женского организма, а наружные половые органы формируются по смешанному типу.
При ложном гермафродитизме у людей половые железы отвечают какому-либо одному полу, а наружные половые органы могут быть сформированы по другому полу либо иметь смешанное развитие, имеющее и мужские и женские черты. Обычно выделяют наружный, внутренний и полный ложный гермафродитизм – в зависимости от соответствия внутренним половым органам наружных.
Следует отметить, что неправильное развитие наружных половых органов далеко не всегда является признаком гермафродитизма. Оно может быть обусловлено врожденной дисфункцией коры надпочечников, гипофиза и рядом других факторов.
Гермафродитизм у людей требует как хирургической коррекции, так и психологической поддержки. Оптимальным является выбор пола ребенка с учетом сформированных наружных половых органов и половых желез. К сожалению, в возрасте, когда половые железы начинают функционировать, делать пластику наружных половых органов уже поздно. Исходя из этого, при гермафродитизме у людей часто используют генетическую диагностику пола, в соответствии с которой принимают решение о пластике половых органов.
Внутренние половые органы при гермафродитизме достаточно часто находятся в недоразвитом состоянии. Поэтому с наступлением переходного возраста гормональный фон корректируют искусственно с помощью заместительной терапии. По этой же причине репродуктивное здоровье при гермафродитизме часто нарушено.
Иногда гермафродизмом пользуются в спорте. Например спортсменку Кастер Семенью, которую подозревают в гермафродитизме. Высокая концентрация мужских гормонов в организме позволяет ей показывать высочайшие для женщин результаты.
39 Биологические аспекты репродукции человека. Особенности строения яйцеклетки и сперматозоида человека. Тип развития, особенности гаметогенеза, время наступления половой зрелости. Особенности женского полового цикла. Искусственное и экстракорпоральное оплодотворение.
РЕПРОДУКЦИЯ ЧЕЛОВЕКА (размножение человека), физиологическая функция, необходимая для сохранения человека как биологического вида. Процесс размножения у человека начинается с зачатия (оплодотворения), т.е. с момента проникновения мужской половой клетки (сперматозоида) в женскую половую клетку (яйцо, или яйцеклетку). Слияние ядер этих двух клеток – начало формирования нового индивида. Человеческий зародыш развивается в матке женщины во время беременности, которая длится 265–270 дней. В конце этого периода матка начинает самопроизвольно ритмически сокращаться, сокращения становятся все сильнее и чаще; амниотический мешок (плодный пузырь) разрывается и, наконец, через влагалище «изгоняется» зрелый плод – рождается ребенок. Вскоре отходит и плацента (послед). Весь процесс, начиная с сокращений матки и кончая изгнанием плода и последа, называется родами.
Гаметогенез — процесс образования яйцеклеток (овогенез) и сперматозоидов (сперматогенез) —подразделяется на ряд стадий.
В стадии размножения диплоидные клетки, из которых образуются гаметы, называют сперматогониями и овогониями. Эти клетки осуществляют серию последовательных митотических делений, в результате чего их количество существенно возрастает. Сперматогонии размножаются на протяжении всего периода половой зрелости мужской особи. Размножение овогоний приурочено главным образом к периоду эмбриогенеза. У человека в женском организме этот процесс наиболее интенсивно протекает в яичниках между 2-м и 5-м месяцами внутриутробного развития. К 7-му месяцу большая часть овоцитов входит в профазу I мейоза.
Стадия размножения- Сперматогонии и Овогонии
На стадии роста происходит увеличение клеточных размеров и превращение мужских и женских половых клеток в сперматоциты и овоциты I порядка, причем последние достигают больших размеров, чем первые.
На стадии созревания основными событиями являются два последовательных деления: редукционное и эквационное, которые вместе составляют мейоз. После первого деления образуются сперматоциты и овоциты II порядка (формула n2с), а после второго — сперматиды и зрелая яйцеклетка (пс).
В результате делений на стадии созревания каждый сперматоцит I порядка дает четыре сперматиды, тогда как каждый овоцит I порядка — одну полноценную яйцеклетку и редукционные тельца, которые в размножении не участвуют. Благодаря этому в женской гамете концентрируется максимальное количество питательного материала — желтка.
Процесс сперматогенеза завершается стадией формирования, или спермиогенеза. Ядра сперматид уплотняются вследствие сверхспирализации хромосом, которые становятся функционально инертными.
Экстракорпоральное оплодотворение - это один из методов лечения бесплодия, суть которого заключается в том, что яйцеклетка оплодотворяется и развивается вне организма будущей матери. В матку женщины переносится уже эмбрион (зародыш, состоящий всего из нескольких клеток). Дальнейшие стадии развития плода происходят в матке, точно так же как при естественном оплодотворении.
Искусственное оплодотворение - это техника, которая помогает при некоторых типах бесплодия, как у женщин, так и у мужчин. В ходе этой процедуры сперма вводится прямо в шейку матки, маточные трубы или матку. Таким образом, сперматозоидам легче добраться до яйцеклетки, так как на их пути нет никаких препятствий. В идеале это должно способствовать наступлению беременности тем, кому не удавалось добиться этого ранее.
Половая зрелость наступает к 15-18 годам.
40 Предмет, задачи и методы генетики. Этапы развития генетики, роль отечественных ученых в ее развитии. Борьба материализма и идеализма в истории генетики. Критика евгеники, расизма и социалдарвинизма.
Генетика—- наука о наследственности и изменчивости живых организмов и методах управления ими. В ее основу легли закономерности наследственности, установленные выдающимся чешским ученым Грегором Менделем (1822—1884) при скрещивании различных сортов гороха.
Задачи генетики: вытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования:
1) механизмов хранения и передачи генетической информации от родительских форм к дочерним;
2) механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды;
3) типов, причин и механизмов изменчивости всех живых существ;
4) взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.
При изучении наследственности и изменчивости на разных уровнях организации живой материи (молекулярный, клеточный,организменный, популяционный) в генетике используют разнообразные методы современной биологии: гибридологический, цитогенетический, биохимический, генеалогический, близнецовый, мутационный и др. Однако среди множества методов изучения закономерностей наследственности центральное место принадлежит гибридологическому методу.
Гибридный метод- суть его заключается в гибридизации (скрещивании) организмов, отличающихся друг от друга по одному или нескольким признакам, с последующим анализом потомства. Этот метод позволяет анализировать закономерности наследования и изменчивости отдельных признаков и свойств организма при половом размножении, а также изменчивость генов и их комбинирование.
Генеалогический метод — составление родословного дерева многих поколений и изучение типа наследования (доминантный или рецессивный, сцепленный с полом или аутосомный), частоты и интенсивности проявления наследственных свойств. Результатом изучения обычно является определение типа наследования, а также риска проявления наследственных нарушений у потомков;
Цитогенетический метод — изучение хромосомных наборов здоровых и больных людей. Результат изучения — определение количества, формы, строения хромосом, особенности хромосомных наборов обоих полов, а также хромосомных нарушений;
Биохимический метод — изучение изменений в биологических параметрах организма, связанных с изменением генотипа. Результат изучения — определение нарушений в составе крови, в околоплодной жидкости и т. д.;
Близнецовый метод — изучение генотипических и фенотипических особенностей однояйцевых и разнояйцевых близнецов. Результат изучения — определение относительного значения наследственности и окружающей среды в формировании и развитии человеческого организма;
Популяционный метод — изучение частоты встречаемости аллелей и хромосомных нарушений в популяциях человека. Результат изучения — определение распространения мутаций и естественного отбора в популяциях человека.
Фактически основные законы генетики были открыты в 1865 г. Грегором Менделем.
Вторичное открытие законов Менделя принадлежит трём учёным – Г. де Фризу (Голландия), К.Корренсу (Германия), Э.Чермаку (Австрия). Практически они одновременно получили факты, полностью подтверждающие закономерности наследования признаков, открытые Менделем на горохе.
Название новой науки – генетика – было предложено в 1906 г. английским учёным В.Бэтсоном (от латинского genetikos – относящийся к происхождению, рождению).
Датчанин В.Иоганнсен в 1909 г. утвердил в биологической литературе такие принципиально важные понятия, как ген (от греческого genos – род, рождение, происхождение), генотип, фенотип.
Менделеевское понятие ген- как материальной единицы наследственности, ответственной за передачу отдельных признаков в ряду поколений организмов.
Тогда же голландский учёный Г. де Фриз (1901) выдвинул теорию изменчивости, основанную на представлении о скачкообразности изменений наследственных свойств в результате мутаций.
Этот этап (с 1900 г. ~ до 1912 г.) – период триумфального шествия менделизма, утверждения открытых Менделем законов наследственности гибридологическими опытами, проведенными в разных странах на высших растениях и животных (лабораторных грызунах, курах, бабочках и др.), в результате чего выяснилось, что законы эти имеют универсальный характер. В течение немногих лет генетика оформилась как самостоятельная биологическая дисциплина и получила широкое признание.
Главной отличительной чертой второго этапа истории генетики (~ 1912 до 1925 г.) было создание и утверждение хромосомной теории наследственности - теория, согласно которой хромосомы, заключённые в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности, т.е. преемственность свойств организмов в ряду поколений определяется преемственностью их хромосом. Ведущую роль в этом сыграли экспериментальные работы американского генетика Т.Моргана (1861-1945) и трёх его учеников – А.Стертеванта, К.Бриджеса, Г.Меллера.
Третий этап истории генетики (~ 1925 – 1940 г.) ознаменован в первую очередь открытием возможности искусственно вызвать мутации.
Первые данные о том, что мутации можно вызвать искусственно были получены в 1925 г. в СССР Г.А.Надсоном и Г.С.Филипповым в опытах по облучению дрожжей радием, а решающие доказательства возможности экспериментального получения мутаций дали в 1927 г. опыты Г.Меллера (1890-1967 гг.) по воздействию на дрозофилу рентгеновских лучей.
Наиболее характерными чертами четвёртого этапа истории генетики (1940-1955) было развитие работ по генетике физиологических и биохимических признаков и вовлечение в круг генетического эксперимента микроорганизмов и вирусов, что повысило разрешающую способность генетического анализа.
Большие успехи были достигнуты в генетических и цитологических исследованиях различных наследственных болезней человека, сложилось и окрепло новое направление медицинской генетики, ставящее основной целью профилактику наследственных дефектов человека. Получили развитие работы по генетике природных популяций, особенно интенсивно они проводились в СССР Н.П.Дубининым
Евге́ника - учение о наследственном здоровье человека и путях улучшения его наследственных свойств, о возможных методах активного влияния на эволюцию человечества в целях дальнейшего совершенствования его природы, об условиях и законах наследования одарённости и таланта, о возможном ограничении передачи наследственных болезней будущим поколениям.
Раси́зм — совокупность воззрений, положения о физической и психической неравноценности человеческих рас и о решающем влиянии расовых различий на историю и культуру человеческого общества.
Социа́льный дарвини́зм (социа́л-дарвини́зм) — социологическая теория, согласно которой закономерности естественного отбора и борьбы за существование, выявленные Чарлзом Дарвином в природе, распространяются на отношения в человеческом обществе. В качестве основных факторов общественной жизни выдвигались принципы естественного отбора, борьбы за существование, выживания наиболее приспособленных.