
- •1.1 Предмет астрономии, объекты изучения.
- •1.2 Разделы астрономии.
- •2.1. Созвездия, их число и история возникновения.
- •2.2. Суточное вращение, понятие о небесной сфере.
- •2.3. Основные пункты и круги, системы координат на небесной сфере.
- •2.4. Системы небесных координат.
- •2.5. Условия для восхода и заката светил.
- •3.1. Эклиптика, эклиптическая система координат. Зодиак и зодиакальные созвездия.
- •3.2. Измерение времени.
- •3.3. Календарь, принципы его построения и различные виды.
- •3.5 Юлианские дни.
- •3.6. Рефракция.
- •3.7. Определение формы и размеров Земли. Триангуляция.
- •Строение солнечной системы
- •5.1. Древние представления о строении мира.
- •5.2. Системы Браге, Бруно и Коперника.
- •5.3. Видимое движение планет и его объяснение. Конфигурации планнет.
- •5.4. Определение расстояний в Солнечной системе.
- •5.5. Годичные параллаксы звезд.
- •6.Движение Луны.
- •6.1. Видимое движение и фазы Луны.
- •6.2 История лунной теории.
- •6.3 Фазы.
- •6.4 Синодический, сидерический и драконический месяцы.
- •6.5 Солнечные и лунные затмения.
- •6.6 Сарос. История затмений.
- •7. Начала небесной механики.
- •7.1 Законы Кеплера.
- •7.2 Элементы эллиптических орбит.
- •7.3 Эфемериды небесных тел
- •8. Влияние масс небесных тел на их движение.
- •8.1 Методы определения масс небесных тел.
- •8.2. Приливы и отливы.
- •8.4 Прецессия и нутация земной оси.
- •8.5 Задача трёх тел.
- •8.6 Задача n тел.
- •8.8 Открытие новых планет.
- •9. Основы космонавтики.
- •9.1 Космические скорости.
- •9.2 Проблема межзвёздных перелётов.
- •Методы астрофизических исследований.
- •10. Яркость небесных тел. Астрофотометрия.
- •10.1 Связь между яркостью объекта, его угловыми размерами и освещённостью, которая образуется в месте наблюдения.
- •10.2 Формула Погсона.
- •10.3 Шкалы звёздных величин.
- •10.4 Цвета звёзд.
- •10.5 Абсолютные звёздные величины.
- •11. Астрономические инструменты.
- •11.1 Оптические телескопы.
- •11.2 Основные характеристики телескопов.
- •11.3 Радиотелескопы.
- •11.4 Радиоинтерферометры со сверхдлинной базой.
- •11.5 Современные телескопы (новые технологии и методы).
- •11.6 Астрономические наблюдения со стратосферных и космических обсерваторий.
- •11.7 Инфракрасная астрономия.
- •11.8 Ультрафиолетовая, рентгеновская и гамма - астрономия.
- •11.9 Понятие о методах нейтринной астрономии.
- •12 Система земля – Луна и ее характеристики
- •12.1 Система Земля - Луна.
- •12.2 Строение атмосферы Земли. Внутреннее строение Земли. Магнитное поле Земли и радиационные пояса.
- •12.3 Рельеф Луны. Химический состав и физические условия на поверхности Луны.
- •13. Физические условия на Меркурии, Венере, Марсе.
- •13.1 Правило Тициуса - Боде. Общие сведения.
- •Эволюция атмосфер планет земной группы:
- •13.2 Рельеф, атмосфера Меркурия.
- •13.3 Рельеф, атмосфера Венеры.
- •13.4 Рельеф, атмосфера Марса.
- •13.5 Спутники Марса – Фобос и Деймос.
- •13.6 Проблема поиска жизни в Солнечной системе.
- •14 Физические условия на Юпитере и Сатурне.
- •14.1 Рельеф и атмосфера Юпитера.
- •14.3 Рельеф, атмосфера Сатурна.
- •14.4 Кольца Сатурна.
- •14.5 Спутники Сатурна.
- •15 Рельеф, атмосфера и спутники Урана, Нептуна.
- •15.1 Рельеф, атмосфера Урана.
- •15.2 Спутники и кольца Урана.
- •15.3 Рельеф, атмосфера Нептуна.
- •15.4 Спутники и кольца Нептуна.
- •15.5 Карликовые планеты.
- •16. Малые тела Солнечной системы.
- •16.1 Астероиды.
- •16.2 Метеоры, метеориты.
- •16.2 Кометы. Физические процессы в ядрах и хвостах комет. Происхождение комет, метеорные потоки, их связь с кометами.
- •16.4 Наиболее известные кометы.
- •17. Основные параметры Солнца.
- •17.1 Размеры, масса, средняя плотность, температура. Верчение Солнца.
- •17.4 Фотосфера Солнца. Грануляция.
- •18.1 Модель внутреннего строения Солнца.
- •18.2 Активные образования в атмосфере Солнца: пятна, флокулы, протуберанцы, вспышки.
- •18.3 Общее магнитное поле Солнца, магнитное поле в области солнечных пятен и иных образований.
- •18.4 Радио- и рентгеновское излучение Солнца. Солнечный ветер и магнитосфера Земли.
- •18.5 Цикличность солнечной активности и её связь с явлениями на Земле.
- •19.1 Методы определения расстояний в астрономии. Единицы расстояний – парсек и световой год.
- •19.2 Основные характеристики звезд.
- •19.4 Спектры, спектральная классификация. Аномалии химического состава.
- •20.4 Двойные и кратные звёзды.
- •20.8 Спектрально-двойные звёзды.
- •21.1 Классификация переменных по характеру переменности.
- •22.2 Эволюция звёзд.
- •23.1 Млечный Путь. Методы звёздной статистики.
- •23.2 Звёздные скопления: шаровые и рассеянные, их диаграмма "спектр - светимость" и оценка возраста. Звёздные ассоциации.
- •24.1 Собственное движение и лучевые скорости звезд. Пекулярные скорости звезд и Солнца в Галактике. Вращение Галактики.
- •25.2 Взаимодействующие галактики. Ядра галактик и их активность.
- •25.4 Определение расстояний до галактик.
- •26.1 Красное смещение в спектрах галактик.
- •26.2 "Горячая Вселенная". Современные представления о строении и эволюции Вселенной.
- •26.3 Первые минуты существования Вселенной. Происхождение химических элементов.
- •26.4 Возникновение и эволюция звезд большой и малой массы.
- •26.5 Заключительные стадии эволюции звезд. «Черные дыры».
- •26.6 Эволюция галактик.
- •26.7 Строение Солнечной системы. Общие закономерности..
- •27.1 Развитие космологии.
- •27.2 Вакуум.
- •27.3 Геометрия Вселенной.
- •27.4 Случайная Вселенная.
- •27.5 Антропный принцип.
- •28.1 Школьные телескопы.
- •28.2 Угломерные приборы.
- •28.3 Спектральные приборы.
- •28.4 Простейшие практические работы по астрономии в средней школе.
18.1 Модель внутреннего строения Солнца.
В силу сферической симметрии физические свойства Солнца одинаковы на одинаковых расстояниях от центра. В зависисмости от свойств вещества, Солнце можно разделить на 4 слоя.
Центральная область простирается на расстояние до 0,2 радиуса называется ядром. Это зона энерговыделения. Температура в ядре 1,5 . 107К. Давление достигает 3 . 1011 атм. В этих условиях атомы водорода движутся со скоростями до сотен км/с. При условии высокой плотности (150 г/см3) часто происходят столкновения атомов. Некоторые из таких столкновений приводят к тесным сближениям атомных ядер, необходимым для возникновения ядерных реакций.
Солнечное ядро - это самоуправляемый термоядерный реактор, в котором происходит синтез ядер гелия из ядер водорода (протон-протонный цикл).
Реакция начинается с -распада одного из двух протонов в момент тесного их сближения:
1H + 1H 2D + e+ + + 1,44 МэВ. (происходит 14 . 109 лет).
При -распаде протон превращается в нейтрон с испусканием позитрона e+ и нейтрино . Объединяясь со вторым протоном, нейтрон даёт ядро тяжёлого водорода - дейтерия 2D. Для каждой пары протонов процесс в среднем осуществляется за 14 млрд. лет, что и определяет медленность термоядерных реакций на Солнце и общую протяжённость его эволюции.
Далее происходят столкновения дейтерия с третьим протоном и образование ядер изотопа 3Не, которые, объединяясь и испуская два протона, дают ядро обычного гелия.
Масса ядра гелия на 1% меньше массы четырёх протонов. Эта потеря массы называется дефектом массы и является причиной выделения в результате ядерных реакций большого количества энергии в виде - излучения и испускания нейтрино. При рождении одного ядра гелия выделяется энергия = 4,129. 10-5 эрг = 25,8 МэВ.
Нейтрино обладают ничтожной массой покоя, распространяются со скоростью света и на Земле должны составлять поток 1011 частиц через 1 см3 за секунду.
Светимость Солнца поддерживается превращением в гелий 600 млн. т водорода.
Основная часть энергии переносится из ядра жёстким электромагнитным излучением, которое миллионы лет диффундирует к поверхностным слоям Солнца. На расстоянии 0,3 радиуса от центра температура становится меньше 5 млн К, давление ниже 10 млрд. атм. и ядерные реакции происходить уже не могут.
Ядро окружено зоной лучистого равновесия, или зоной лучистого переноса энергии. Эта зона простирается на расстояние от 0,2 до 0,7 радиуса.
Энергия ядра к внешним слоям переносится излучением. Электромагнитная волна сама переносит свою энергию. В этой зоне значительная часть движущихся из недр фотонов частично поглощается, частично рассеивается свободными ядрами и электронами, поэтому перенос энергии сопровождается уменьшением средней энергии квантов, а также уменьшением температуры, давления и плотности вещества. Эти слои только передают наружу излучение, выделившееся на большей глубине в виде гамма-квантов, которые поглощаются и переизлучаются отдельными атомами. Вместо каждого поглощённого кванта большой энергии атомы излучают несколько квантов меньших энергий. Поглощая, атом ионизуется или сильно возбуждается и приобретает способность излучать. Однако возвращение электрона на исходный энергетический уровень происходит не сразу, а через промежуточные состояния, при переходах между которыми выделяются кванты меньших энергий. В результате этого происходит дробление жёстких квантов на менее энергичные. Поэтому вместо гамма-лучей излучаются рентгеновские, вместо рентгеновских - ультрафиолетовые, которые в свою очередь уже в наружных слоях дробятся на кванты видимых и тепловых лучей, окончательно излучаемых Солнцем.
На растоянии 0,7 радиуса от центра температурный режим становится таким, что уже могут существовать нейтральные атомы водорода и гелия (Т=.106 К, р= 106 атм, р= 10-2 г/см3).
Перенос энергии излучением становится неэффективным. В отдельных объёмах газа температура может возрастать, они становятся более лёгкими и поднимаются вверх, на их место опускаются более холодные массы газа. Возникают крупномасштабные движения вещества - конвекция, которая и является основным механизмом переноса энергии к поверхностным слоям. Эта зона называется конвективной.
Часть энергии при относительном движении потоков плазмы в конвективной зоне превращается в энергию электрических и магнитных полей.
Протяжённость конвективной зоны 1,5 . 106 км (0,2 радиуса). Скорость движения вещества значительно возрастает. От нескольких м/с до 3 км/с.
Над конвективной зоной на расстоянии 0,9 радиуса от центра и выше располагается атмосфера.