
- •1.1 Предмет астрономии, объекты изучения.
- •1.2 Разделы астрономии.
- •2.1. Созвездия, их число и история возникновения.
- •2.2. Суточное вращение, понятие о небесной сфере.
- •2.3. Основные пункты и круги, системы координат на небесной сфере.
- •2.4. Системы небесных координат.
- •2.5. Условия для восхода и заката светил.
- •3.1. Эклиптика, эклиптическая система координат. Зодиак и зодиакальные созвездия.
- •3.2. Измерение времени.
- •3.3. Календарь, принципы его построения и различные виды.
- •3.5 Юлианские дни.
- •3.6. Рефракция.
- •3.7. Определение формы и размеров Земли. Триангуляция.
- •Строение солнечной системы
- •5.1. Древние представления о строении мира.
- •5.2. Системы Браге, Бруно и Коперника.
- •5.3. Видимое движение планет и его объяснение. Конфигурации планнет.
- •5.4. Определение расстояний в Солнечной системе.
- •5.5. Годичные параллаксы звезд.
- •6.Движение Луны.
- •6.1. Видимое движение и фазы Луны.
- •6.2 История лунной теории.
- •6.3 Фазы.
- •6.4 Синодический, сидерический и драконический месяцы.
- •6.5 Солнечные и лунные затмения.
- •6.6 Сарос. История затмений.
- •7. Начала небесной механики.
- •7.1 Законы Кеплера.
- •7.2 Элементы эллиптических орбит.
- •7.3 Эфемериды небесных тел
- •8. Влияние масс небесных тел на их движение.
- •8.1 Методы определения масс небесных тел.
- •8.2. Приливы и отливы.
- •8.4 Прецессия и нутация земной оси.
- •8.5 Задача трёх тел.
- •8.6 Задача n тел.
- •8.8 Открытие новых планет.
- •9. Основы космонавтики.
- •9.1 Космические скорости.
- •9.2 Проблема межзвёздных перелётов.
- •Методы астрофизических исследований.
- •10. Яркость небесных тел. Астрофотометрия.
- •10.1 Связь между яркостью объекта, его угловыми размерами и освещённостью, которая образуется в месте наблюдения.
- •10.2 Формула Погсона.
- •10.3 Шкалы звёздных величин.
- •10.4 Цвета звёзд.
- •10.5 Абсолютные звёздные величины.
- •11. Астрономические инструменты.
- •11.1 Оптические телескопы.
- •11.2 Основные характеристики телескопов.
- •11.3 Радиотелескопы.
- •11.4 Радиоинтерферометры со сверхдлинной базой.
- •11.5 Современные телескопы (новые технологии и методы).
- •11.6 Астрономические наблюдения со стратосферных и космических обсерваторий.
- •11.7 Инфракрасная астрономия.
- •11.8 Ультрафиолетовая, рентгеновская и гамма - астрономия.
- •11.9 Понятие о методах нейтринной астрономии.
- •12 Система земля – Луна и ее характеристики
- •12.1 Система Земля - Луна.
- •12.2 Строение атмосферы Земли. Внутреннее строение Земли. Магнитное поле Земли и радиационные пояса.
- •12.3 Рельеф Луны. Химический состав и физические условия на поверхности Луны.
- •13. Физические условия на Меркурии, Венере, Марсе.
- •13.1 Правило Тициуса - Боде. Общие сведения.
- •Эволюция атмосфер планет земной группы:
- •13.2 Рельеф, атмосфера Меркурия.
- •13.3 Рельеф, атмосфера Венеры.
- •13.4 Рельеф, атмосфера Марса.
- •13.5 Спутники Марса – Фобос и Деймос.
- •13.6 Проблема поиска жизни в Солнечной системе.
- •14 Физические условия на Юпитере и Сатурне.
- •14.1 Рельеф и атмосфера Юпитера.
- •14.3 Рельеф, атмосфера Сатурна.
- •14.4 Кольца Сатурна.
- •14.5 Спутники Сатурна.
- •15 Рельеф, атмосфера и спутники Урана, Нептуна.
- •15.1 Рельеф, атмосфера Урана.
- •15.2 Спутники и кольца Урана.
- •15.3 Рельеф, атмосфера Нептуна.
- •15.4 Спутники и кольца Нептуна.
- •15.5 Карликовые планеты.
- •16. Малые тела Солнечной системы.
- •16.1 Астероиды.
- •16.2 Метеоры, метеориты.
- •16.2 Кометы. Физические процессы в ядрах и хвостах комет. Происхождение комет, метеорные потоки, их связь с кометами.
- •16.4 Наиболее известные кометы.
- •17. Основные параметры Солнца.
- •17.1 Размеры, масса, средняя плотность, температура. Верчение Солнца.
- •17.4 Фотосфера Солнца. Грануляция.
- •18.1 Модель внутреннего строения Солнца.
- •18.2 Активные образования в атмосфере Солнца: пятна, флокулы, протуберанцы, вспышки.
- •18.3 Общее магнитное поле Солнца, магнитное поле в области солнечных пятен и иных образований.
- •18.4 Радио- и рентгеновское излучение Солнца. Солнечный ветер и магнитосфера Земли.
- •18.5 Цикличность солнечной активности и её связь с явлениями на Земле.
- •19.1 Методы определения расстояний в астрономии. Единицы расстояний – парсек и световой год.
- •19.2 Основные характеристики звезд.
- •19.4 Спектры, спектральная классификация. Аномалии химического состава.
- •20.4 Двойные и кратные звёзды.
- •20.8 Спектрально-двойные звёзды.
- •21.1 Классификация переменных по характеру переменности.
- •22.2 Эволюция звёзд.
- •23.1 Млечный Путь. Методы звёздной статистики.
- •23.2 Звёздные скопления: шаровые и рассеянные, их диаграмма "спектр - светимость" и оценка возраста. Звёздные ассоциации.
- •24.1 Собственное движение и лучевые скорости звезд. Пекулярные скорости звезд и Солнца в Галактике. Вращение Галактики.
- •25.2 Взаимодействующие галактики. Ядра галактик и их активность.
- •25.4 Определение расстояний до галактик.
- •26.1 Красное смещение в спектрах галактик.
- •26.2 "Горячая Вселенная". Современные представления о строении и эволюции Вселенной.
- •26.3 Первые минуты существования Вселенной. Происхождение химических элементов.
- •26.4 Возникновение и эволюция звезд большой и малой массы.
- •26.5 Заключительные стадии эволюции звезд. «Черные дыры».
- •26.6 Эволюция галактик.
- •26.7 Строение Солнечной системы. Общие закономерности..
- •27.1 Развитие космологии.
- •27.2 Вакуум.
- •27.3 Геометрия Вселенной.
- •27.4 Случайная Вселенная.
- •27.5 Антропный принцип.
- •28.1 Школьные телескопы.
- •28.2 Угломерные приборы.
- •28.3 Спектральные приборы.
- •28.4 Простейшие практические работы по астрономии в средней школе.
Методы астрофизических исследований.
Цель астрофизики - изучение физической природы и эволюции отдельных космических объектов, включая и всю Вселенную. За последние десятилетия она стала ведущим разделом астрономии.
Открытие спектрального анализа и изобретение фотографии в 19 веке, возникновение фотоэлектрии, радиоастрономии и внеатмосферных методов исследования в 20 в. привели к расцвету астрофизики. Астрономия стала всеволновой, т.е. наблюдения проводятся в любом диапазоне э/м волн.
Вместе с развитием практической астрофизики развилась и теоретическая, благодаря созданию теории излучения и строения атома.
Теоретическая астрофизика состоит из разделов, изучающих физику звёзд, Солнца, планет, туманностей, космических лучей, космологию.
В практическую астрофизику входят астрофотометрия, астроспектроскопия, астрофотография, калориметрия.
Новейшие разделы астрофизики - радиоастрономия, баллонная, рентгеновская, внеатмосферная, гамма -, нейтринная астрономия.
10. Яркость небесных тел. Астрофотометрия.
10.1 Связь между яркостью объекта, его угловыми размерами и освещённостью, которая образуется в месте наблюдения.
Основная задача астрофотометрии - изучение интенсивности излучений небесных тел. Если космический объект обладает видимыми угловыми размерами, то определяется его яркость. Если он выглядит точкой, то определяется блеск.
Блеск точечного объекта, которым является звезда - это астрономический эквивалент понятия освещённости.
Пусть на площадку падает по перпендикулярному направлению поток излучения F. Тогда освещённостью Е площадки называется отношение
Е = F/σ.
Для измерения освещённости используется единица - люкс (лк). Это та освещённость, которую создаёт международная свеча на расстоянии, равном одному метру.
Освещённость, создаваемая на поверхности Земли Солнцем, близка к 135.000 лк, Луной - 0,25 лк, а светом ночного неба - 0,0003 лк.
Освещённость и блеск уменьшаются обратно пропорционально квадрату расстояния от источника излучения.
Освещённость поверхности, перпендикулярной к падающим лучам, определяет блеск источника света.
Для измерения блеска в астрономии вводится понятие звёздной величины.
Рассмотрим площадку S на поверхности светящегося тела. Пусть по перпендикулярному к ней направлению она испускает излучение, обладающее интенсивностью I.
Отношение I/S называется яркостью площадки.
Яркость не зависит от расстояния источника света от наблюдателя. При удалении светящейся площадки от наблюдателя, интенсивность излучения убывает обратно пропорционально квадрату расстояния, но и видимая площадь убывает в этой же пропорции. Следовательно их отношение, т.е. яркость, сохраняет свою величину.
Поэтому нельзя говорить “яркость звезды”.
Для измерения яркости используется величина стильб (сб). Это та яркость, которую имеет площадка в 1 см2, если сила испускаемого ею света равна одной международной свече.
Яркость поверхности Солнца около 150 000 сб, а диска полной Луны - 0,25 сб.
10.2 Формула Погсона.
Видимая звёздная величина m или блеск является мерой освещённости Е, создаваемой источником на перпендикулярной к его лучам поверхности в месте наблюдения.
Сложившееся ещё в древности деление видимых невооружённым глазом звёзд на «звёздные величины» есть отражение общего психофизиологического закона Вебера - Фехнера (чувствительность меняется как логарифм интенсивности раздражителя), определяющего изменение «ощущения» с изменением «раздражения».Связь m и Е выражается формулой:
m= a + blgE,
где коэффициент b= -2,5 введён в середине 19 века английским астрономом Погсоном, подметившим, что у разных наблюдателей интервалу в 5 звёздных величин соответствует отношение световых потоков или освещённостей около 100. (Это правило было положено в основу шкалы зв. величин ещё Гиппархом). Он был принят равным 100, чтобы логарифм отношения освещённости был точно равен 0,400.
Тогда отношение
Em/Em+1 = 2,512.
Величина а представляет нуль-пункт шкалы звёздных величин и устанавливается международным соглашением, связанным с выбором фотометрического стандарта. Сначала этим стандартом была звёздная величина Полярной звезды, потом - звёздные величины около 100 звёзд Северного Полярного Ряда.
По отношению к звезде стандарта по формуле
m2 - m1 = -2,5 (lgE2 - lgE1)
можно определить блеск любого источника.
Блеск звезды связан с её видимой звёздной величиной формулой Погсона. Можем получить эту формулу таким способом. Обозначим через ln блеск звезды n-й величины.
Было введено ещё Гиппархом, что
l1/l2 = l2/l3 = l3/l4 = ... = ln-1/ln = 2,512.
Перемножая соотношения, находим, что
l1/l4 = l1/l2* l2/l3* l3/l4 = 2,5123.
Эти соотношения могут быть обобщены в следующем виде:
lm/ln = 2,512n-m.
или, так как lg2,512 = 0,4, то
n-m = 2,5 lg(lm/ln)
Числа m и n могут быть и дробными, так как звёздные величины не обязательно целые числа.
Современное определение звёздной величины:
Здесь Е - освещённость, - длина волны, f - спектральная чувствительность регистрирующей аппаратуры, С - постоянная, задающая нуль-пункт системы величин. Коэффициент -2,5 определяет шкалу звёздных величин и называется коэффициентом Погсона. Знак минус указывает на то, что при увеличении блеска зв. величина уменьшается.
Земная атмосфера поглощает значительную долю энергии, приходящей от астрономических объектов. Поглощение сильно зависит от длины волны, зенитного расстояния объекта, высоты обсерватории над уровнем моря и состояния атмосферы. Поэтому измерения исправляют на атмосферную экстинкцию. В таком случае Е определяет распределение энергии в спектре за пределами земной атмосферы.