Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции.А.П.-14.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.59 Mб
Скачать

Редкоиспользуемые, устаревшие и экспериментальные виды

Вид

Описание

Акустическая память (англ. acoustic storage)

использует замкнутые акустические линии задержки.

Трековая память, или память «на беговой дорожке» (англ. magnetic racetrack memory, MRM)

базируется на открытых не так давно спинтронных эффектах, в частности на использовании спинового тока для перемещения наноразмерных магнитных объектов — доменных стенок — в пределах магнитных нанопроволок. Под действием такого тока доменные стенки бегут друг за другом по этой проволоке, словно бегуны по спринтерской дорожке (треку)

Голографическая память (англ. holographic storage)

использует пространственную графическую информацию, отображаемую в виде интерференционных структур.

Криогенная память (англ. cryogenic storage)

использует сверхпроводящие материалы

Сегнетоэлектрическая память (англ. Ferroelectric RAM, FeRAM)

Статическая оперативная память с произвольным доступом, ячейки которой сохраняют информацию, используя сегнетоэлектрический эффект. Исследованиями в этом направлении занимаются фирмы Hitachi совместно с Ramtron, Matsushita с фирмой Symetrix. По сравнению с флеш-памятью, ячейки FRAM практически не деградируют — гарантируется до 1010 циклов перезаписи.

Молекулярная память (англ. molecular storage)

Использует технологию атомной туннельной микроскопии. Носителями информации являются специальные виды плёнок. Головки, считывающие данные, сканируют поверхность плёнки. Их чувствительность позволяет определять наличие или отсутствие в молекулах отдельных атомов, на чём и основан принцип записи-считывания данных. В середине 1999 года эта технология была продемонстрирована компанией Nanochip. В основе архитектуры устройств записи-считывания лежит технология MARE (Molecular Array Read-Write Engine). Были достигнуты следующие показатели по плотности упаковки: около 40 Гбит/см² в устройствах чтения/записи и 128 Гбит/см² в устройствах с однократной записью, что в 6 раз превосходило тогдашние экспериментальные образцы магнитных дисков и более чем в 25 раз — серийные модели. Достигнутая на 2008 год скорость записи и чтения не позволяет говорить о массовом применении этой технологии.

Электростатическая память (англ. electrostatic storage)

Носителями данных являются накопленные заряды статического электричества на поверхности диэлектрика.

Интерфейс IDE

Как уже отмечалось, IDE (Integrated Drive Electronics) представляет собой обобща­ющий термин, применимый практически к каждому дисководу со встроенным контрол­лером. В настоящий момент интерфейс IDE получил официальное название АТА (AT Attachment), принятое в качестве стандарта ANSI. Название АТА, относящееся к ори­гинальной параллельной версии интерфейса, обозначает жесткий диск, подключенный непосредственно к шине АТ, которая более известна как 16-разрядная шина ISA.

ATA является 16-разрядным параллельным интерфейсом, т. е. по кабелю интерфейса одновременно передается 16 бит. В начале 2001 года был официально представлен новый интерфейс, получивший название Serial ATA. Serial ATA (SATA) единовременно передает по кабелю не более одного бита данных, что позволяет значительно уменьшить сечение и длину используемого кабеля за счет повышения частоты передачи данных. SATA пред­ставляет собой совершенно новую конструкцию физического интерфейса, сохранившую при этом программную совместимость с параллельным интерфейсом ATA. Название АТА, встречающееся на страницах этой книги, относится к параллельной версии интерфейса, а название SATA — к интерфейсу Serial ATA.

Поскольку в накопителе IDE контроллер встроенный, его можно подключать непо­средственно к разъему на плате адаптера или на системной плате. Это существенно упро­щает установку жесткого диска, так как не нужно подсоединять отдельные кабели для подачи питания, сигналов управления и т. п. Кроме того, при объединении контроллера и жесткого диска сокращается общее количество элементов в устройстве, уменьшается длина соединительных проводов, а в результате повышается надежность, устойчивость к шумам и быстродействие системы по За время существования персональных компьютеров было разработано несколько ин­терфейсов. В табл. 7.1 приведены типы интерфейсов и период их использования.

Из них только первых два можно считать настоящими интерфейсами между контрол­лером и диском. SCSI и IDE — это интерфейсы системного уровня, в которых контроллер одного из первых двух типов выполнен в виде микросхемы (или комплекта микросхем) и встроен в диск. Например, в большинстве дисков SCSI и IDE установлено устройство, собранное по той же схеме, что и автономный контроллер ESDI. В интерфейсе SCSI меж­ду контроллером и системной шиной

История развития интерфейса IDE

Основная функция контроллера накопителя, или интерфейса, — передача данных из системы в накопитель и обратно. От типа интерфейса зависит, с какой скоростью будут осуществляться эти операции, что во многом определяет общую производительность компьютера. Приводимые в технической литературе статистические данные не всегда точно отражают истинное положение дел. Я постараюсь отделить мифы, основанные на чересчур завышенных показателях, от реальности.

сравнению с тем, когда автономный контроллер подключается к жесткому диску с помощью длинных кабелей.

Объединяя контроллер (в том числе и входящий в его состав шифратор/дешифратор) с жестким диском, удается существенно повысить надежность воспроизведения данных по сравнению с системами, в которых используются автономные контроллеры. Происхо­дит это потому, что кодирование данных и их преобразование из цифровой формы в ана­логовую (и наоборот) осуществляется непосредственно в жестком диске при меньшем уровне внешних помех. В результате аналоговые сигналы, временные параметры кото­рых весьма критичны, не передаются по плоским кабелям, где они могли бы "набрать" помех; кроме того, при передаче сигналов по кабелям могут возникнуть непредсказуемые задержки их распространения. В конечном счете совмещение контроллера и жесткого

диска в едином блоке позволило повысить тактовую частоту шифратора/дешифратора, плотность размещения данных на носителе и общее быстродействие системы.

Объединение контроллера и жесткого диска освободило разработчиков от необходи­мости строго следовать стандартам, что было неизбежно при использовании прежних интерфейсов. Взаимно согласованная и "подогнанная" пара "жесткий диск-контроллер" обладает гораздо большим быстродействием по сравнению с прежними комбинациями автономных устройств.

Разъем IDE на системной плате во многих компьютерах представляет собой просто "усеченный" разъем шины расширения. В стандартном варианте ATA IDE используются разъемы с 40 контактами из возможных 98, имеющихся в разъеме 16-разрядной шины ISA. Из всего набора сигнальных линий шины к разъему IDE подведены только те, кото­рые необходимы для работы стандартного контроллера жесткого диска компьютеров XT и AT. Например, для контроллера жесткого диска в компьютере AT нужна линия IRQ 14, поэтому на разъем IDE системной платы AT выведена только эта линия IRQ. На разъем системной платы компьютера XT выведена только линия IRQ 5, к которой и подключен контроллер. Обратите внимание, что, даже если интерфейс ATA подключен к микросхеме South Bridge и работает на частоте шины PCI, разводка и назначение контактов все равно не изменяются.

Замечание

Многие пользователи полагают, что в компьютерах, в которых разъем IDE установлен на си­стемной плате, контроллер жесткого диска расположен на ней же. На самом деле это не так: контроллер находится в самом жестком диске. Мне не доводилось сталкиваться с системами, в которых контроллер жесткого диска был бы смонтирован на системной плате.

Когда говорят о накопителях IDE, то обычно имеют в виду вариант ATA IDE, по­лучивший наибольшее распространение. Однако существуют и другие разновидности накопителей IDE для других шин. Например, в некоторых компьютерах PS/2 устанав­ливаются жесткие диски, предназначенные для работы с шиной MCA и подключаемые непосредственно к разъему расширения (через адаптер). Существуют также накопители IDE, предназначенные для 8-разрядной шины ISA, но они не получили широкого распро­странения. В большинстве IBM-совместимых компьютеров с шинами ISA и EISA уста­навливались 16-разрядные накопители ATA IDE. Сегодня интерфейс ATA IDE является самым распространенным. В ряде новейших систем применяется интерфейс Serial ATA.

Главное достоинство накопителей ATA — их дешевизна. Поскольку для них не нужен отдельный контроллер, количество кабелей и разъемов, необходимых для подключения жесткого диска, оказывается существенно меньшим, чем в былом варианте жесткого диска с автономным контроллером.

Еще одно достоинство накопителей ATA — быстродействие. Но, как ни странно, к дан­ному классу относятся не только жесткие диски с максимальной производительностью, но и едва ли не самые "медленные" устройства. Это иллюстрация того, что многое за­висит от конкретной реализации одной и той же технической идеи. Дать общую оценку производительности всех дисков ATA невозможно, поскольку каждая модель уникальна. Однако высококачественные устройства обладают быстродействием, равным или превос­ходящим аналогичный параметр для жестких дисков прочих типов (правда, при работе в автономном компьютере и под управлением однозадачной операционной системы).

Первые диски IDE

Эти диски выпускались в виде жестких плат. Некоторые компании, например Plus Development (подразделение Quantum), поступали следующим образом: прикрепляли не­большие жесткие диски формата 3,5 дюйма (в стандарте ST-506/412 или ESDI) непосред­ственно к платам стандартных контроллеров. Полученный модуль вставлялся в разъем шины как обычный контроллер жесткого диска. Но когда тяжелый, вибрирующий жест­кий диск устанавливается в разъем расширения и крепится всего одним винтом, это, естественно, далеко не лучшая ситуация, не говоря о том, что такой модуль упирается в соседние платы, поскольку он намного толще обычного адаптера.

Некоторые компании пошли другим путем и переработали конструкцию контролле­ра, установив его вместо платы управления в стандартном жестком диске. При этом сам жесткий диск монтируется обычным образом в предназначенном для него отсеке. Конеч­но, как и любое другое устройство компьютера, встроенный контроллер таких жестких дисков необходимо подключать к шине. Делается это с помощью кабеля, соединяющего жесткий диск с одним из разъемов.

Существует несколько способов такого подключения. Компания Compaq первой стала устанавливать в своих компьютерах специальный адаптер для перехода с 98-контактного печатного разъема шины AT (ISA), расположенного на системной плате, на 40-контактный разъем, к которому подключается жесткий диск. Такого разъема оказалось вполне доста­точно, поскольку уже было ясно, что для контроллера жесткого диска никогда не потре­буется более 40 линий.

В 1987 году IBM разработала свои накопители IDE для шины MCA, которые под­ключаются к шине через специальный адаптер, названный промежуточной платой. На этих платах устанавливается лишь несколько буферных микросхем, поскольку встроен­ные контроллеры уже разрабатывались с расчетом на прямое подключение к шине. Еще одна 8-разрядная разновидность накопителя IDE была разработана для 8-разрядной шины ISA, используемой, например, в компьютерах PS/2 модели 30. В интерфейсе IDE, пред­назначенном для систем XT, тоже используются 40-контактные разъемы и кабель. Они подобны тем разъемам и кабелям, которые применяются в 16-разрядных версиях, но не совместимы с ними.

Интерфейсы IDE для различных системных шин

Существуют следующие основные разновидности интерфейса IDE, рассчитанные на взаимодействие со стандартными шинами:

Serial AT Attachment (SATA);

параллельный AT Attachment (ATA) IDE (16-разрядная шина ISA); XT IDE (8-разрядная шина ISA);

MCA IDE (16-разрядная шина MCA).

В настоящее время из всех перечисленных типов используются только версии ATA. Уже появились более быстрые и мощные версии интерфейсов ATA и Serial ATA; в част­ности, улучшенные варианты ATA получили название ATA-2 и далее. Иногда эти версии называют также EIDE (Enhanced IDE), Fast-ATA, Ultra-ATA или Ultra-DMA. Несмотря на все возможности последней версии ATA-6, в целом интерфейс Serial ATA демонстрирует большую производительность и функциональность.

Замечание

Многие пользователи путают 16- и 32-разрядные соединения шины и 16- и 32-разрядные подсо­единения жестких дисков. PCI-соединение обеспечивает 32-разрядный (в будущем 64-разряд­ный) обмен между шиной и контроллером накопителя. Однако в конфигурации накопителей IDE (или EIDE) вы все еще получаете только 16-разрядный обмен между накопителем и кон­троллером. Это обычно не создает серьезных проблем, поскольку один или два накопителя не могут обеспечить такой обмен данными, чтобы заполнить хотя бы 16-разрядный канал.

В версиях XT и ATA для подключения жестких дисков используются стандартные 40-контактные разъемы и кабели, но разводки выводов у них разные, поэтому они ока­зываются не совместимыми друг с другом. В версии MCA IDE, рассчитанной только на компьютеры с шиной MCA, применяются совершенно другие, 72-контактные разъемы.

В большинстве случаев в системе должен быть установлен накопитель IDE того типа, который соответствует шине компьютера. Другими словами, накопители XT IDE рабо­тают только в компьютерах класса XT с разъемами 8-разрядной шины ISA, накопители ATA IDE можно устанавливать только в компьютерах класса AT с разъемами 16-разрядной шины ISA или EISA, а накопители MCA IDE пригодны только для систем с шиной MCA (например, для PS/2 модели 50 и последующих). Правда, возможны и другие вариан­ты. Например, компания Silicon Valley выпускает платы адаптеров для компьютеров XT, предназначенные для работы с накопителями ATA IDE. Другие компании, например Arco Electronics и Sigma Data, выпускают адаптеры для систем с шиной MCA, к которым мож­но подключать те же накопители ATA IDE. Эти адаптеры могут пригодиться владельцам компьютеров XT и PS/2, поскольку выбор накопителей IDE для систем XT и MCA весьма ограничен, а моделей накопителей ATA IDE выпускается очень много.

В большинстве новых компьютеров разъем ATA установлен непосредственно на си­стемной плате. Если его нет, то для подключения к компьютеру накопителя ATA IDE мож­но использовать дополнительную плату адаптера. Обычно на такой переходной плате нет ничего, кроме двух разъемов (98-контактного печатного разъема шины и 40-контактного разъема IDE) и набора проводников. Эти платы не являются контроллерами, так как последние уже встроены в жесткие диски. Правда, на некоторых из них монтируются дополнительные устройства, например специализированная ROM BIOS или кэш-память.

Накопители ATA IDE

Прототип накопителя ATA IDE, или 40-контактный IDE-разъем, был разработан сов­местными усилиями компаний CDC, Western Digital и Compaq. Первым устройством ATA IDE стал жесткий диск формата 5,25 дюйма емкостью 40 Мбайт половинного раз­мера, выпущенный CDC. В нем использовался встроенный контроллер компании Western Digital, а устанавливались эти диски в первых компьютерах Compaq 386 (1986 год).

Через некоторое время 40-контактный разъем и метод построения дискового интер­фейса были представлены на рассмотрение в комитет по стандартам при ANSI. Совмест­ными усилиями этого института и компаний-изготовителей были устранены некоторые шероховатости, "подчищены хвосты", и в марте 1989 года был опубликован стандарт на интерфейсы, известный как CAM ATA. Однако еще до появления этого стандарта многие компании, например Conner Peripherals, вслед за CDC внесли некоторые изменения в пер­воначальную конструкцию. В результате многие старые накопители ATA очень трудно объединять в двухдисковую конфигурацию, принятую для современных систем.

Варианты вопросов итоговой контрольной работы

для специальности 230401«Информационные системы»

по учебной дисциплине «Технические средства информатизации»