
- •Магнитное поле и его характеристики
- •Закон Био- Савара-Лапласа, его применение к расчету магнитного поля.
- •Закон Ампера, взаимодействие параллельных токов. Магнитная постоянная, единицы магнитной индукции и напряженности магнитного поля.
- •Магнитное поле движущегося заряда.
- •Действие магнитного поля на движущий заряд.
- •Эффект Холла.
- •Циркуляция вектора в для магнитного поля в вакууме.
- •Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля
- •Магнитные элементы электронов и атомов
- •Диамагнетики и парамагнетики. Намагниченность, магнитное поле в веществе.
- •Ферромагнетики и их свойства. Природа ферромагнетизма.
- •Закон Фаралея. Правило Ленца. Максвелловская трактовка явления электромагнитной индукции
- •Явление взаимо- и самоиндукции. Токи Фуко
- •Энергия магнитного поля.
- •Уравнение Максвелла в интегральной и дифференциальной форме. Их физический смысл, некоторые свойства уравнений Максвелла.
- •Переменный ток. Полное и индуктивное поле.
- •Мощность, выделяемая в цепи переменного тока. Принцип работы теплового амперметра.
- •Введение в теорию волновых процессов, основные понятия. Математическое описание синусоидальной волны. Волновое уравнение.
- •Синусоидалные волны
- •Уравнение плоской монохроматической волны. Комплексная форма записи уравнения плоской монохроматической волны.
- •Скорость и структура полей плоской электромагнитной волны.
- •Плотность энергии и интенсивность электромагнитной волны. Давление света.
- •Интерференция колебаний. Понятие когерентности.
- •Интерференция воли от двух точечных источников
- •Классические оптические интерференционные опыты.
- •Различные виды интерферометров.
- •Интерференция немонохроматических волн.
- •Полосы равной толщины. Полосы равного наклона. Полосы равной толщины и равного наклона.
- •Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- •Дифракция Фраунгофера на щели.
- •33.Дифракция Фраунгофера на дифракционной решетке.
- •34.Дифракционная решетка как спектральный прибор. Типы дифракционных решеток.
- •35.Поляризация волны. Естественный и поляризованный свет. Поляризаторы. Закон Малюса.
- •36.Поляризация при двойном лучепреломлении. Построение Гюйгенса изотропной и анизотропной сред.
- •37.Вращение плоскости поляризации.
- •Тепловое лучеиспускание и лучепоглощение. Абсолютно черное тело. Закон Кирхгофа.
- •Законы излучения абсолютно черного тела. Гипотеза Планка. Классический подход
- •[Править] Первый закон излучения Вина
- •[Править] Второй закон излучения Вина
- •[Править] Закон Рэлея — Джинса
- •[Править] Закон Планка
- •[Править] Закон Стефана — Больцмана
- •[Править] Закон смещения Вина
- •Строение атома. Дискретность энергетических состояний атома. Постулаты Бора.
- •Квантовая теория строения атома водорода (по Бору).Объяснение спектров излучения и поглощения водорода. Квантовые числа. Принцип Паули. Правила отбора.
- •42.Понятие о строении многоэлектронных атомов и образовании оптических и рентгеновских характеристических спектров. Закон Мозли.
- •Формулировка закона Мозли
- •43.Люминесценция. Законы фотолюминесценции и ее некоторые практические применения.
- •44.Фотоэффект. Законы фотоэффекта. Различные виды современных фотоэлементов.
- •45.Эффект Комптона.
- •46.Корпускулярно- волновой дуализм. Гипотеза де Бройля. Дифракция электронов.
- •47.Соотношение неопределенностей Гейзенберга.
- •48.Волновая функция, некоторые ее свойства, плотность вероятности. Уравнение Шредингера.
- •49.Уравнение Шредингера. Движение свободной частицы. Частица в одномерной прямоугольной ”потенциальной яме” с бесконечно высокими стенками.
- •50.Размер, состав и заряд атомного ядра. Массово и зарядовое числа. Дефект массы и энергия связи ядра.
- •Энергия Связи и Дефект Массы Ядра
- •51.Ядерные силы. Модели ядра.
- •52.Радиоактивные излучения. Нейтрино и антинейтрино. Изотопы.
- •53.Законы радиоактивных распадов.
- •Ядерные реакции и их основные типы.
- •Позитрон. Β распад. Электронный захват.
- •Ядерные реакции под действием нейтронов.
Переменный ток. Полное и индуктивное поле.
Переменный ток – это такой ток, направление и числовое значение которого
меняются с течением времени (знакопеременный ток).
Примечание: не оговаривается форма кривой тока, периодичность, длительность
его изменения.
На практике под переменным током чаще всего подразумевают периодический
переменный ток.
Физическая сущность переменного тока сводиться к колебаниям электрических
зарядов в среде (проводнике или диэлектрике).
Цепь с индуктивностью – это электрическая цепь, состоящая из генератора
переменного тока и идеального L – элемента- катушки индуктивности
Особенности цепи:
1.Соблюдается закон Ома.
2.
L-
элемент оказывает
переменному току сопротивление, которое называется индуктивным. Оно
обозначается XL и возрастает с увеличением частоты линейно,
соответственно формуле:
XL = wL = 2pnL
3.В цепи есть сдвиг фаз между напряжением и током: V опережает I по фазе на
угол p/2
4.Индуктивное сопротивление не потребляет энергии, т.к. она запасается в
магнитном поле катушки, а затем отдается в электрическую цепь. Поэтому
индуктивное сопротивление называется кажущимся или мнимым.
Полная цепь переменного тока - это цепь из генератора, а также R, C, и L
элементов, взятых в разных сочетаниях и количествах.
Для разбора проходящих в электрических цепях процессов используют полные
последовательные и параллельные цепи.
Последовательная цепь - это такая цепь, где все элементы могут быть
соединены последовательно, один за другим.
Особенности полной цепи:
1.Соблюдается закон Ома
2.Полная цепь оказывает переменному току сопротивление. Это сопротивление
называется полным (мнимым, кажущимся) или импедансом.
3.Импеданс зависит от сопротивления всех элементов цепи, обозначается Z и
вычисляется не простым, а геометрическим (векторным) суммированием. Для
последовательно соединенных элементов формула импеданса имеет следующее
значение:
Мощность, выделяемая в цепи переменного тока. Принцип работы теплового амперметра.
Активной
мощностью
переменного тока называется средняя
за период мощность необратимых
преобразований в цепи переменного
тока (преобразование энергии
электрического тока во внутреннюю
энергию):
|
|
или,
переходя к действующим значениям,
|
|
Величина
коэффициенте мощности потребляется лишь малая часть мощности, вырабатываемой генератором. Остальная часть мощности периодически перекачивается от генератора к потребителю и обратно и рассеивается в линиях электропередач. |
коэффициент мощности |
Амперме́тр (см. ампер + …метр от μετρέω — измеряю) — прибор для измерения силы тока в амперах. Шкалу амперметров градуируют в микроамперах, миллиамперах, амперах или килоамперах в соответствии с пределами измерения прибора. В электрическую цепь амперметр включается последовательно с тем участком электрической цепи, силу тока в котором измеряют; для увеличения предела измерений — с шунтом или через трансформатор. (Примером амперметра с трансформатором являются «токовые клещи»)
Принцип действия магнитоэлектрического прибора основан на создании крутящего момента, благодаря взаимодействию между полем постоянного магнита и током, который проходит через обмотку рамки. С рамкой соединена стрелка, которая перемещается по шкале. Угол поворота стрелки пропорционален силе тока.
Электродинамические амперметры состоят из неподвижной и подвижной катушек, соединённых параллельно или последовательно. Взаимодействие между токами, которые проходят через катушки, вызывает отклонения подвижной катушки и соединённой с нею стрелки. В электрическом контуре амперметр соединяется последовательно с нагрузкой, а при высоком напряжении или больших токах — через трансформатор