
- •Магнитное поле и его характеристики
- •Закон Био- Савара-Лапласа, его применение к расчету магнитного поля.
- •Закон Ампера, взаимодействие параллельных токов. Магнитная постоянная, единицы магнитной индукции и напряженности магнитного поля.
- •Магнитное поле движущегося заряда.
- •Действие магнитного поля на движущий заряд.
- •Эффект Холла.
- •Циркуляция вектора в для магнитного поля в вакууме.
- •Поток вектора магнитной индукции. Теорема Гаусса для магнитного поля
- •Магнитные элементы электронов и атомов
- •Диамагнетики и парамагнетики. Намагниченность, магнитное поле в веществе.
- •Ферромагнетики и их свойства. Природа ферромагнетизма.
- •Закон Фаралея. Правило Ленца. Максвелловская трактовка явления электромагнитной индукции
- •Явление взаимо- и самоиндукции. Токи Фуко
- •Энергия магнитного поля.
- •Уравнение Максвелла в интегральной и дифференциальной форме. Их физический смысл, некоторые свойства уравнений Максвелла.
- •Переменный ток. Полное и индуктивное поле.
- •Мощность, выделяемая в цепи переменного тока. Принцип работы теплового амперметра.
- •Введение в теорию волновых процессов, основные понятия. Математическое описание синусоидальной волны. Волновое уравнение.
- •Синусоидалные волны
- •Уравнение плоской монохроматической волны. Комплексная форма записи уравнения плоской монохроматической волны.
- •Скорость и структура полей плоской электромагнитной волны.
- •Плотность энергии и интенсивность электромагнитной волны. Давление света.
- •Интерференция колебаний. Понятие когерентности.
- •Интерференция воли от двух точечных источников
- •Классические оптические интерференционные опыты.
- •Различные виды интерферометров.
- •Интерференция немонохроматических волн.
- •Полосы равной толщины. Полосы равного наклона. Полосы равной толщины и равного наклона.
- •Дифракция света. Принцип Гюйгенса-Френеля. Метод зон Френеля.
- •Дифракция Фраунгофера на щели.
- •33.Дифракция Фраунгофера на дифракционной решетке.
- •34.Дифракционная решетка как спектральный прибор. Типы дифракционных решеток.
- •35.Поляризация волны. Естественный и поляризованный свет. Поляризаторы. Закон Малюса.
- •36.Поляризация при двойном лучепреломлении. Построение Гюйгенса изотропной и анизотропной сред.
- •37.Вращение плоскости поляризации.
- •Тепловое лучеиспускание и лучепоглощение. Абсолютно черное тело. Закон Кирхгофа.
- •Законы излучения абсолютно черного тела. Гипотеза Планка. Классический подход
- •[Править] Первый закон излучения Вина
- •[Править] Второй закон излучения Вина
- •[Править] Закон Рэлея — Джинса
- •[Править] Закон Планка
- •[Править] Закон Стефана — Больцмана
- •[Править] Закон смещения Вина
- •Строение атома. Дискретность энергетических состояний атома. Постулаты Бора.
- •Квантовая теория строения атома водорода (по Бору).Объяснение спектров излучения и поглощения водорода. Квантовые числа. Принцип Паули. Правила отбора.
- •42.Понятие о строении многоэлектронных атомов и образовании оптических и рентгеновских характеристических спектров. Закон Мозли.
- •Формулировка закона Мозли
- •43.Люминесценция. Законы фотолюминесценции и ее некоторые практические применения.
- •44.Фотоэффект. Законы фотоэффекта. Различные виды современных фотоэлементов.
- •45.Эффект Комптона.
- •46.Корпускулярно- волновой дуализм. Гипотеза де Бройля. Дифракция электронов.
- •47.Соотношение неопределенностей Гейзенберга.
- •48.Волновая функция, некоторые ее свойства, плотность вероятности. Уравнение Шредингера.
- •49.Уравнение Шредингера. Движение свободной частицы. Частица в одномерной прямоугольной ”потенциальной яме” с бесконечно высокими стенками.
- •50.Размер, состав и заряд атомного ядра. Массово и зарядовое числа. Дефект массы и энергия связи ядра.
- •Энергия Связи и Дефект Массы Ядра
- •51.Ядерные силы. Модели ядра.
- •52.Радиоактивные излучения. Нейтрино и антинейтрино. Изотопы.
- •53.Законы радиоактивных распадов.
- •Ядерные реакции и их основные типы.
- •Позитрон. Β распад. Электронный захват.
- •Ядерные реакции под действием нейтронов.
Дифракция Фраунгофера на щели.
Рассмотрим бесконечно длинную щель шириной b. Для расчета интенсивности света, распространяющегося по разным направлениям за щелью, запишем выражение для волны, посылаемой каждым элементом волнового фронта,
и
просуммируем действие всех элементов. Амплитуда волны, обусловленной одним таким элементом, пропорциональна ширине такого элемента (Cdx). Коэффициент C определяется из условия, что по направлению
, амплитуда волны, посылаемая всей щелью, равна А0, т.е.
Следовательно, световое возмущение в соответствующем участке щели:
Для
отыскания действия всей щели в направлении
необходимо учесть разность фаз,
характеризующую волны, доходящие от
различных элементов волнового фронта
до т. наблюдения
.
Из рис. разность фаз (хода):
Тогда световое возмущение:
Результирующее возмущение
(2)
Следовательно,
результирующая волна, идущая в направлении
,
имеет амплитуду:
В
практических случаях угол
мал, и можно положить
Т
огда
В
ыражение
(4) показывает, что вдоль экрана освещённость
меняется, проходя через минимумы и
максимумы.
(3) обращается в ноль для
т.е.
b
условие минимума
(*)
b
условие максимума
наибольший максимум имеет место для
В
этом случае
Распределим интенсивности:
г
де
- интенсивность света, идущего от щели
в направлении первичного пучка. Кривая
распределения интенсивности имеет вид:
Рис.26
В
центре
- яркая светлая полоса, по бокам вторичные,
относительно слабые max
, их положение определяется условием
(*), а распределение интенсивности –
уравнением (5).
Дифракция от прямоугольного и круглого отверстия – самостоятельно.
33.Дифракция Фраунгофера на дифракционной решетке.
Дифракция Фраунгофера —
случай дифракции,
при котором дифракционная картина
наблюдается на значительном расстоянии
от отверстия или преграды. Расстояние
должно быть таким, чтобы можно было
пренебречь в выражении для разности
фаз членами порядка
,
что сильно упрощает теоретическое
рассмотрение явления. Здесь
—
расстояние от отверстия или преграды
до плоскости наблюдения,
—
длина волны излучения, а
—
радиальная координата рассматриваемой
точки в плоскости наблюдения в полярной
системе координат. Иными словами,
дифракция Фраунгофера наблюдается
тогда, когда число зон
Френеля
,
при этом приходящие в точку волны
являются практически плоскими. При
наблюдении данного вида дифракции
изображение объекта не искажается и
меняет только размер и положение в
пространстве. В противоположность
этому, при дифракции
Френеля изображение меняет
также свою форму и существенно искажается.
Дифракционные явления Фраунгофера имеют большое практическое значение, лежат в основе принципа действия многих спектральных приборов, в частности, дифракционных решёток. В последнем случае для наблюдения светового поля «в бесконечности» используются линзы или вогнутые дифракционные решетки (соответственно, экран ставится в фокальной плоскости