- •Введение
- •Раздел 1 основы проектирования механизмов
- •Тема 1.1 Основы расчета деталей машин
- •Тема 1.2 Критерии работоспособности деталей машин
- •Раздел 2 механические передачи
- •Тема 2.1 Общие сведения о передачах
- •Тема 2.2 Фрикционные передачи
- •Тема 2.3 Зубчатые передачи
- •Тема 2.4 Передача винт-гайка
- •Применение передач винт-гайка
- •Разновидности винтов в передаче винт-гайка
- •Тема 2.5 Червячные передачи
- •Тема 2.6 Редукторы
- •Общие сведения о редукторах
- •Конструкция редуктора
- •Смазка и смазочные материалы
- •Мотор-редуктор
- •Тема 2.7 Ременные передачи
- •Конструктивные типы ремней
- •Устройства для натяжения ремня
- •Основные геометрические соотношения в ременной передаче
- •Упругое скольжение ремня
- •Силы, действующие в ременной передаче
- •Коэффициент тяги и кривые скольжения ремня
- •Напряжения в ремне и их круговая эпюра
- •Расчет ременных передач до тяговой способности
- •Тема 2.8 Цепные передачи
- •Силы, действующие в цепной передаче
- •Расчет (подбор) цепи
- •Тема 2.9 Валы и оси
- •Расчет валов на прочность
- •Предварительный расчет валов
- •Уточненный расчет валов
- •Расчет валов на жесткость
- •Тема 3.10 Подшипники скольжения
- •Основы гидродинамической теории смазки
- •Смазочные материалы
- •Антифрикционные материалы
- •Конструктивные типы подшипников скольжения
- •Условный расчет подшипников скольжения
- •Тема 2.11 Подшипники качения
- •Тема 2.12 Муфты
- •Классификация и назначение муфт
- •Расчет дисковой фрикционной муфты
- •Раздел 3 соединения деталей машин
- •Тема 3.1 Заклепочные и штифтовые соединения
- •Тема 3.2 Сварные и клеевые соединения
- •Применение различных видов сварки
- •Типы сварных швов и их расчет
- •Расчет швов:
- •Тема 3.3 Соединения с натягом
- •Тема 3.4 Резьбовые соединения
- •Типы резьб и их применение
- •Элементы крепежных соединений
- •Определение кпд резьбы
- •Средства против самоотвинчивания винтов и гаек
- •Материал винтовых соединений
- •Расчет винтовых соединений
- •Резьбовые соединения, работающие при циклических нагрузках
- •Тема 3.5 Шпоночные соединения
- •Расчет ненапряженных шпоночных соединений
- •Тема 3.6 Шлицевые соединения
- •Расчет шлицевых соединений
- •Список литературы
Антифрикционные материалы
Это материалы и сплавы, обладающие низким коэффициентном трения в паре со стальным валом. К ним предъявляются, кроме того, следующие требования:
а) хорошая прирабатываемость;
б) способность удерживать масляную пленку, которая должна как бы прилипать к поверхности;
в) хороший отвод тепла;
г) достаточная механическая прочность.
Всеми этими качествами не обладает ни один из антифрикционных материалов, например:
Баббиты - оловянистые сплавы - не обладают свойством (г), однако их наплавляют на стальной, бронзовый или чугунный вкладыш, что и решает вопрос прочности.
Бронзы оловянистые и свинцовистые слабо обладают свойством (а).
Сплавы на алюминиевой основе слабо обладают свойством (г).
Антифрикционные чугуны вообще обладают недостаточными антифрикционными свойствами и могут применяться лишь при малых удельных давлениях и скоростях.
Неметаллические материалы (пластмассы) имеют довольно высокое значение коэффициента трения и не обладают свойством (в).
Конструктивные типы подшипников скольжения
Рис. 3.10.1
Простейшие подшипники скольжения имеют неразъемный корпус обычно с бронзовой втулкой; более сложные подшипники имеют разъем вдоль оси как корпуса, так и вкладышей. Вкладыши делаются стальными или чугунными с наплавкой антифрикционного сплава или бронзовые. В зоне разъема вкладышей имеются так называемые холодильники - емкости для масла, а на поверхности контакта с шайкой вала нарезаются неглубокие масляные канавки. Конструкции подшипников разнообразны, с ними необходимо ознакомиться по учебнику.
Условный расчет подшипников скольжения
Этот расчет непосредственно не отражает наличие жидкостного трения, но, благодаря своей простоте и большому накопленному опыту по допускаемым величинам, достаточно широко применяется в машиностроении.
а) расчет на удельное давление:
(3.10.1)
б) на удельную мощность трения:
(3.10.2)
Тема 2.11 Подшипники качения
Достоинства и недостатки подшипников качения; классификация и маркировка подшипников качения; основные типы подшипников качения и их материалы; расчет подшипников качения на долговечность; особенности конструирования подшипниковых узлов; смазывание подшипников качения; КПД; уплотнительные устройства.
Классификация и область применения подшипников качения
1. Шариковый радиальный - самый массовый, распространенный и дешевый тип. Воспринимает радиальные и небольшие осевые нагрузки (до 70% от неиспользованной радиальной). Применять следует везде, где это возможно.
Рис. 2.11.1
2. Шариковый сферический - самоустанавливающийся тип. Воспринимает радиальные и незначительные осевые нагрузки (до 20% от неиспользованной радиальной). Применяется там, где оси опор смежны или при гибких длинных валах, имеющих большой прогиб.
3. Шариковый радиально-упорный. Воспринимает радиальные и значительные осевые нагрузки. Имеет глубокие канавки; разъемный - устанавливается попарно. Применяется там, где осевые нагрузки сравнительно велики.
4. Роликовый цилиндрический - воспринимает только радиальные, но, благодаря линейному контакту, большие по величине нагрузки. Применяется там, где нет осевых нагрузок.
5. Роликовый сферический - воспринимает очень большие радиальные и довольно большие осевые нагрузки. Самоустанавливающийся тип. Применяется там же, где тип (2), но при больших нагрузках.
6. Роликовый конический - воспринимает большие радиальные и большие осевые нагрузки, универсальный, разъемный тип подшипника. Рекомендуется, в частности, для конических зубчатых передач. Устанавливается попарно, при износе регулируется осевой зазор, для чего под фланцами крышек предусматривается набор регулировочных прокладок или устанавливаются регулировочные гайки.
7. Роликовый с витыми роликами (тип ХАЯТ) - воспринимает только радиальные нагрузки, хорошо сопротивляется удару благодаря упругим роликам, изготовленным из плотно навитой проволоки прямоугольного сечения. Не обладает высокой точностью, поэтому применяется для тихоходных валов грубой центровки.
8. Игольчатой - воспринимает только радиальные нагрузки. Отличается очень малыми радиальными габаритами, может работать без одной обоймы или вообще без обойм, не имеет сепаратора, иголки укладываются вплотную одна к другой. Предельное число оборотов меньше, чем у других подшипников.
9. Шариковый упорный - воспринимает только осевые нагрузки. Устанавливается в паре с другим подшипником, воспринимающим радиальную нагрузку.
Материал и термообработка подшипников качения
Обоймы (кольца) подшипников и тела качения изготавливаются из высокохромистой и высокоуглеродистой стали типа ШХ-15 с закалкой до весьма высокой твердости HRC = 50-66. Сталь этого типа после закалки приобретает очень высокие механические свойства, не становясь при этом хрупкой.
Точность изготовления и посадки подшипников качения
Кольца и тела качения изготавливаются по 1-му классу точности и выше. Обычные подшипники имеют нормальную точность - 0 (знак не выбивается); для повышенных и высоких скоростей применяются более высокие точности изготовления: 6 - повышенная, 4 - высокая,
2 - сверхвысокая (знак выбивается на торцах колец). Стоимость высокоточных подшипников намного превосходит стоимость нормальных.
Для установки подшипников на шейках валов и в корпусе применяются посадки промежуточного типа:
если вращается вал, то на валу – m6 или k6 или js6, а в корпусе – H6 или H7 ;
если вращается корпус, а вал (ось) неподвижны, то на валу – h6 или h8 , а в корпусе – M7 или K7 или Js 7.
Более тугие посадки затрудняют монтаж и демонтаж подшипников и могут служить причиной защемления тел качения, поэтому не могут быть рекомендованы; более свободные посадки не обеспечивают удержания от вращения подшипниковых колец.
Система обозначения подшипников качения
На один и тот же диаметр шейки вала предусматривается несколько серий подшипников, которые отличаются размерами колец и тел качения и соответственно величиной воспринимаемых нагрузок.
В пределах каждой серии подшипники равных типов взаимозаменяемы в мировом масштабе. В стандартах указываются: номер подшипника, размеры, вес, предельное число оборотов, статическая нагрузка и коэффициент работоспособности.
Серии:
1. Особо легкая.
2. Легкая.
3. Средняя.
4. Тяжелая.
5. Легкая широкая.
6. Средняя широкая.
Рис. 2.11.2
Две крайние цифры номера справа, умноженные на пять, выражают диаметр шейки вала d в мм; третья цифра справа выражает номер серии; четвертая цифра справа выражает тип подшипника, так: отсутствие цифры (нуль) - шариковый радиальный, единица - шариковый сферический, два - роликовый цилиндрический, ... семь - роликовый конический.
Пятая и другие цифры справа, если они есть, означают конструктивные особенности данного типа.
Расчет на долговечность (по динамической грузоподъёмности) - основной расчет.
С – паспортная динамическая грузоподъёмность подшипника (каталогам подшипников) – это такая постоянная нагрузка, которую подшипник может выдержать в течение одного миллиона оборотов без появления признаков усталости.
Динамическая грузоподъёмность и ресурс работы подшипника L (в миллионах оборотов) связаны эмпирической формулой
,
(2.11.1)
где Р – эквивалентная динамическая нагрузка на подшипник (см. ниже),
p = 3 для шариковых и p =3,33 для роликовых подшипников.
Ресурс подшипника в часах работы
,
(2.11.2)
где n – частота вращения подшипника (об/мин).
Эквивалентная динамическая нагрузка для радиальных и радиально-упорных подшипников:
,
(2.11.3)
где
- радиальная нагрузка на опору;
- осевая нагрузка
на опору;
V - коэффициент, зависящий от того, какое кольцо вращается: если внутреннее – V = 1; если наружное V= 1,2.
X и Y - табличные коэффициенты, характеризующие способность данного типа подшипника воспринимать радиальную и осевую нагрузку (выбираются по каталогам подшипников).
Кб – коэффициент безопасности, зависящий от характера воспринимаемой нагрузки и степени ответственности механизма в машине(выбирается по справочникам в пределах 1,0-2,5);
KТ - табличный температурный коэффициент, при t 1000C - Кт = 1.
При практических расчётах, когда задана расчётная долговечность работы подшипника в часах, требуемая динамическая грузоподъёмность определится из выражения
(2.11.4)
Центробежные силы
инерции, действующие в подшипниках
качения, определяются известным
уравнением
.
При малых и средних угловых скоростях
они не очень велики, но сильно возрастают
при высоких и сверхвысоких углов их
скоростях, становясь главными нагрузками,
которые и определяют предельное число
оборотов подшипников этого типа.
Для упорных шариковых подшипников центробежные силы составляют большую опасность, чем для других типов, способствуя износу сепараторов.
