Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все лекции сопромат.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.12 Mб
Скачать

1.3.2. Понятие о напряжениях

Внутренние силы, действующие в некотором сечении со стороны отброшенной части тела, можно привести к главному вектору и главному моменту. Выделим в рассматриваемом сечении с единичным вектором нормали и около точки М малую площадку А (рис. 1.7 а).

а б

Рис. 1.7

Главный вектор внутренних сил, действующих на этой площадке, обозначим через р. Среднее напряжение на площадке A будет

.

В пределе при A 0 получим напряжение в точке М

.

Вектор полных напряжений рп зависит не только от действующих на тело внешних сил и координат рассматриваемой точки, но и от ориентации в пространстве площадки A, характеризуемой вектором . Совокупность всех векторов напряжений в точке М для всевозможных направлений вектора и определяет напряженное состояние в точке М.

В общем случае направление вектора полных напряжений рп не совпадает с направлением вектора нормали . Проекция вектора рп на направление нормали называется нормальным напряжением , а на плоскость, проходящую через точку М и ортогональную вектору , – касательным напряжением  (рис 1.7 б).

Нормальные напряжения возникают, когда частицы материала стремятся отдалиться друг от друга или, наоборот, сблизиться. Касательные напряжения связаны со сдвигом частиц по плоскости рассматриваемого сечения.

Очевидно, что

.

Касательное напряжение в свою очередь может быть разложено по направлениям осей ОУ и ОZ (xy, .xz). Размерность напряжений – Н/м2.

Если вокруг точки А мысленно вырезать параллелепипед, то по его граням будет действовать совокупность напряжений, показанных на рис. 1.8. Нормальные и касательные напряжения в каждом поперечном сечении тела связаны определенным образом с внутренними усилиями, действующими в этом сечении. Если рассмотреть элементарную площадку dА поперечного сечения А бруса с действующими по этой площадке напряжениями ,у, z, получим, что на площадку dА действуют элементарные силы dА, уdА,zdA. Тогда можно записать следующие интегральные зависимости:

N= ; ; ;

; .

В сопротивлении материалов принято следующее правило знаков для напряжений. Нормальное напряжение считается положительным, если совпадает по направлению с внешней нормалью п к площадке, и отрицательным, если его направление обратно.

Касательные напряжения считаются положительными, если вектор касательных напряжении следует поворачивать против хода часовой стрелки до совпадения с внешней нормалью, и отрицательными – в противном случае (рис. 1.9).

Так как между напряжениями и внутренними усилиями существует интегральная связь, то правило знаков для внутренних силовых факторов обуслов лено принятым правилом знаков для нормальных  и касательных  напряжений. Моменты приняты положительными, как и ранее, если они действуют против хода часовой стрелки.

Рис. 1.8 Рис 1.9