- •Сопротивление материалов
- •Основные обозначения
- •Лекция 1. Основные понятия и исходные положения
- •1.1. Введение
- •1.2. Основные понятия и исходные положения
- •1.2.1. Реальный объект и расчетная схема
- •1.2.2. Основные гипотезы и допущения сопротивления материалов
- •1.2.3. Внешние силы (нагрузки)
- •1.3. Метод сечений
- •1.3.1. Внутренние силы
- •1.3.2. Понятие о напряжениях
- •1.4. Понятия о перемещениях и деформациях
- •Вопросы для самопроверки
- •Лекция 2. Центральное растяжение (сжатие)
- •2.1. Внутренние силы при растяжении
- •2. 2. Нормальные напряжения и условие прочности
- •2.3. Механические испытания материалов при растяжении (сжатии)
- •2.4. Потенциальная энергия деформации
- •Вопросы для самопроверки
- •Лекция 3. Теория напряженного и деформированного состояний
- •3.1. Главные площадки и главные напряжения
- •Напряженным состоянием тела в точке называют совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим данную точку.
- •3.2. Виды напряженного состояния
- •3.2.1. Линейное напряженное состояние
- •3.2.2. Плоское напряженное состояние
- •Рассмотрим частные случаи плоского напряженного состояния.
- •3.2.3. Объемное напряженное состояние
- •3.3. Обобщенный закон Гука
- •3.4. Теории прочности
- •Вторая теория прочности – теория наибольших деформаций – впервые была высказана французскими учеными Мариоттом и Навье, а затем поддержана Понселе и Сен-Венаном.
- •Вопросы для самопроверки
- •Лекция 4. Геометрические характеристики плоских сечений
- •4.1. Статические моменты сечений
- •4.2. Моменты инерции сечений
- •4.2.1. Изменение моментов инерции при параллельном переносе осей
- •4.2.2. Изменение моментов инерции сечения при повороте осей
- •4.3. Главные оси инерции и главные моменты инерции
- •4.4. Моменты инерции простых сечений
- •4.4.1. Прямоугольник
- •4.4.2. Треугольник
- •4.4.3. Круг
- •4.4.4. Кольцо
- •Вопросы для самопроверки
- •Лекция 5. Кручение прямого бруса
- •1. Построение эпюр крутящих моментов.
- •2. Напряжения в поперечном сечении.
- •3. Условия прочности и жесткости при кручении.
- •5.1. Построение эпюр крутящих моментов
- •5.2. Напряжения в поперечном сечении
- •5.3. Условия прочности и жесткости при кручении вала
- •5.4. Потенциальная энергия деформации при кручении
- •Вопросы для самопроверки
- •Лекция 6. Плоский изгиб
- •6.1. Построение эпюр поперечной силы и изгибающего момента
- •Решение
- •6.2. Напряжения при чистом изгибе
- •6.3. Напряжения при поперечном изгибе
- •6.4. Перемещения при плоском изгибе
- •Вопросы для самопроверки
- •Лекция 7. Перемещения в балках при чистом изгибе
- •7.1. Линейные и угловые перемещения в балках при прямом изгибе
- •7.2. Определение перемещений путем интегрирования уравнения изогнутой оси балки
- •7.3. Метод начальных параметров
- •7.4. Пример расчета
- •Вопросы для самопроверки
- •Лекция 8. Сложное сопротивление
- •1. Косой изгиб.
- •2. Внецентренное растяжение (сжатие).
- •3. Кручение с изгибом.
- •8.1. Косой изгиб
- •8.2. Внецентренное растяжение (сжатие)
- •8.2.1. Расчет напряжений при внецентренном растяжении (сжатии)
- •8.2.2. Свойства нулевой линии
- •8.2.3. Ядро сечения
- •8.3. Кручение с изгибом
- •Вопросы для самопроверки
- •Лекция 9.Устойчивость сжатых стержней
- •2. Влияние способов закрепления концов стержня на критическую силу.
- •9.1. Понятие об устойчивости. Задача Эйлера
- •9.2. Влияние способов закрепления концов стержня на критическую силу
- •9.3. Пределы применимости формулы Эйлера
- •9.4. Расчет стержней на устойчивость по коэффициенту снижения допускаемых напряжений
- •Относительный радиус инерции
- •Вопросы для самопроверки
- •Лекция 10. Динамическое действие нагрузок. Усталость
- •1. Динамическое действие нагрузок.
- •10.1. Динамическое действие нагрузок
- •10.1.1. Вычисление напряжений при равноускоренном движении
- •10.1.2. Определение перемещений и напряжений при ударе
- •10.1.3. Частные случаи
- •10.2. Прочность при циклически меняющихся напряжениях
- •10.2.1. Влияние концентраций напряжений, состояния поверхности и размеров детали на усталостную прочность
- •10.2.2. Запас усталостной прочности и его определение
- •Вопросы для самопроверки
- •Литература
- •Оглавление
- •Вопросы для самопроверки…………………………………………………...104
Относительный радиус инерции
Форма сечения |
ρmin |
Прямоугольник (h/b=2) |
0.204 |
Квадрат |
0,289 |
Круг |
0,36 |
Двутавр |
0,27 – 0,36 |
Швеллер |
0,38 – 0,45 |
Уголок равнобокий |
0,4 – 0,6 |
Кольцо (d/D=0,7…0,9) |
0,86 – 1,53 |
Коробчатое (d/D=0,7…0,9) |
0,9 – 1,6 |
Из табл. 9.3 видно, что наиболее устойчивыми являются стержни с кольцевой или коробчатой формами поперечных сечений.
Вопросы для самопроверки
1. Что означает выражение «сжатый стержень потерял устойчивость»?
2. Какая сила называется критической?
3. Почему в реальных конструкциях сжимающие стержень силы должны
быть меньше критических?
4. Почему нельзя допускать потерю устойчивости элементов конструкций?
5. Запишите формулу Эйлера.
6. Как влияют условия закрепления стержня на величину критической силы?
7. Запишите формулу Эйлера с учетом условий закрепления стержня.
8. Сформулируйте условие применимости формулы Эйлера.
9. Запишите формулу Ясинского.
10. Могут ли быть такие случаи, когда сжатый стержень не будет терять ус-
тойчивость?
11. Нарисуйте
график зависимости
.
12. Опишите в общем виде схему расчета сжатых стержней с помощью ко-
эффициента уменьшения допускаемого напряжения.
Лекция 10. Динамическое действие нагрузок. Усталость
Вопросы лекции:
1. Динамическое действие нагрузок.
2. Прочность при циклически меняющихся напряжениях.
10.1. Динамическое действие нагрузок
До сих пор мы изучали действие на детали сооружений статических нагрузок. Как известно из предыдущего, статические нагрузки от нуля до конечных значений изменяют свою величину настолько медленно, что ускорения, получаемые при этом элементами сооружения, пренебрежимо малы. Однако весьма часто нагрузки имеют динамический характер, так как изменяются во времени с большой скоростью. Действие таких нагрузок сопровождается колебаниями сооружений и их отдельных элементов.
Напряжения, возникающие при колебаниях деталей, могут во много раз превосходить по своей величине напряжения от действия статических нагрузок.
Расчет деталей сооружений на динамическую нагрузку более сложен, чем расчет на статическую нагрузку. Трудность заключается, с одной стороны, в более сложных методах определения внутренних усилий и напряжений, возникающих от действия динамической нагрузки, и, с другой – в более сложных методах определения механических свойств материалов при динамической нагрузке.
Например, при действии ударной нагрузки (т. е. чрезвычайно малой продолжительности) многие материалы, которые при статическом действии нагрузок оказывались пластичными, работают как хрупкие; при действии многократно повторяющейся переменной нагрузки прочность материалов резко снижается.
Общий метод расчета на динамическую нагрузку основан на известном из теоретической механики принципе Даламбера. Согласно этому принципу, всякое движущееся тело может рассматриваться как находящееся в состоянии мгновенного равновесия, если к действующим на него внешним силам добавить силу инерции, равную произведению массы тела на его ускорение и направленную в сторону, противоположную ускорению. Поэтому в тех случаях, когда известны силы инерции, без всяких ограничений можно применять метод сечений и для определения внутренних усилий использовать уравнения равновесия. В тех же случаях, когда определение сил инерции затруднительно, так, например, при ударе, для определения динамических напряжений и деформаций используется закон сохранения энергии.
