
- •Сопротивление материалов
- •Основные обозначения
- •Лекция 1. Основные понятия и исходные положения
- •1.1. Введение
- •1.2. Основные понятия и исходные положения
- •1.2.1. Реальный объект и расчетная схема
- •1.2.2. Основные гипотезы и допущения сопротивления материалов
- •1.2.3. Внешние силы (нагрузки)
- •1.3. Метод сечений
- •1.3.1. Внутренние силы
- •1.3.2. Понятие о напряжениях
- •1.4. Понятия о перемещениях и деформациях
- •Вопросы для самопроверки
- •Лекция 2. Центральное растяжение (сжатие)
- •2.1. Внутренние силы при растяжении
- •2. 2. Нормальные напряжения и условие прочности
- •2.3. Механические испытания материалов при растяжении (сжатии)
- •2.4. Потенциальная энергия деформации
- •Вопросы для самопроверки
- •Лекция 3. Теория напряженного и деформированного состояний
- •3.1. Главные площадки и главные напряжения
- •Напряженным состоянием тела в точке называют совокупность нормальных и касательных напряжений, действующих по всем площадкам (сечениям), содержащим данную точку.
- •3.2. Виды напряженного состояния
- •3.2.1. Линейное напряженное состояние
- •3.2.2. Плоское напряженное состояние
- •Рассмотрим частные случаи плоского напряженного состояния.
- •3.2.3. Объемное напряженное состояние
- •3.3. Обобщенный закон Гука
- •3.4. Теории прочности
- •Вторая теория прочности – теория наибольших деформаций – впервые была высказана французскими учеными Мариоттом и Навье, а затем поддержана Понселе и Сен-Венаном.
- •Вопросы для самопроверки
- •Лекция 4. Геометрические характеристики плоских сечений
- •4.1. Статические моменты сечений
- •4.2. Моменты инерции сечений
- •4.2.1. Изменение моментов инерции при параллельном переносе осей
- •4.2.2. Изменение моментов инерции сечения при повороте осей
- •4.3. Главные оси инерции и главные моменты инерции
- •4.4. Моменты инерции простых сечений
- •4.4.1. Прямоугольник
- •4.4.2. Треугольник
- •4.4.3. Круг
- •4.4.4. Кольцо
- •Вопросы для самопроверки
- •Лекция 5. Кручение прямого бруса
- •1. Построение эпюр крутящих моментов.
- •2. Напряжения в поперечном сечении.
- •3. Условия прочности и жесткости при кручении.
- •5.1. Построение эпюр крутящих моментов
- •5.2. Напряжения в поперечном сечении
- •5.3. Условия прочности и жесткости при кручении вала
- •5.4. Потенциальная энергия деформации при кручении
- •Вопросы для самопроверки
- •Лекция 6. Плоский изгиб
- •6.1. Построение эпюр поперечной силы и изгибающего момента
- •Решение
- •6.2. Напряжения при чистом изгибе
- •6.3. Напряжения при поперечном изгибе
- •6.4. Перемещения при плоском изгибе
- •Вопросы для самопроверки
- •Лекция 7. Перемещения в балках при чистом изгибе
- •7.1. Линейные и угловые перемещения в балках при прямом изгибе
- •7.2. Определение перемещений путем интегрирования уравнения изогнутой оси балки
- •7.3. Метод начальных параметров
- •7.4. Пример расчета
- •Вопросы для самопроверки
- •Лекция 8. Сложное сопротивление
- •1. Косой изгиб.
- •2. Внецентренное растяжение (сжатие).
- •3. Кручение с изгибом.
- •8.1. Косой изгиб
- •8.2. Внецентренное растяжение (сжатие)
- •8.2.1. Расчет напряжений при внецентренном растяжении (сжатии)
- •8.2.2. Свойства нулевой линии
- •8.2.3. Ядро сечения
- •8.3. Кручение с изгибом
- •Вопросы для самопроверки
- •Лекция 9.Устойчивость сжатых стержней
- •2. Влияние способов закрепления концов стержня на критическую силу.
- •9.1. Понятие об устойчивости. Задача Эйлера
- •9.2. Влияние способов закрепления концов стержня на критическую силу
- •9.3. Пределы применимости формулы Эйлера
- •9.4. Расчет стержней на устойчивость по коэффициенту снижения допускаемых напряжений
- •Относительный радиус инерции
- •Вопросы для самопроверки
- •Лекция 10. Динамическое действие нагрузок. Усталость
- •1. Динамическое действие нагрузок.
- •10.1. Динамическое действие нагрузок
- •10.1.1. Вычисление напряжений при равноускоренном движении
- •10.1.2. Определение перемещений и напряжений при ударе
- •10.1.3. Частные случаи
- •10.2. Прочность при циклически меняющихся напряжениях
- •10.2.1. Влияние концентраций напряжений, состояния поверхности и размеров детали на усталостную прочность
- •10.2.2. Запас усталостной прочности и его определение
- •Вопросы для самопроверки
- •Литература
- •Оглавление
- •Вопросы для самопроверки…………………………………………………...104
9.2. Влияние способов закрепления концов стержня на критическую силу
Вывод формулы Эйлера осуществлен для бруса с шарнирно закрепленными концами. Тем не менее эта формула имеет универсальный характер, не зависит от способа закрепления бруса и через коэффициент п учитывает число полуволн синусоиды, которые укладываются на его длине. Применим, например, эту формулу для определения критической силы бруса с заделанными концами (рис. 9.6). Как видим, число полуволн изогнутой оси в этом случае п = 2 и, следовательно, критическая сила при данных опорных устройствах равна
.
(9.3)
Этот результат можно переписать в виде
.
(9.4)
Рассмотрим пример определения критической силы в случае, когда брус изгибается не по целому числу полуволн синусоиды (рис. 9.7) – брус, защемленный одним концом и шарнирно опертый другим.
Данный случай представляет собой статически неопределимую систему. Со стороны шарнирной опоры возникает горизонтальная реакция опоры R.
Изгибающий
момент в произвольном сечении бруса
будет равен
,
а дифференциальное уравнение упругой
линии будет иметь вид:
, или
.
Общее решение этого уравнения имеет вид:
.
Используя условия на концах бруса, выразим постоянные А и В через R. При х = 0 прогиб z = 0, следовательно, В = 0. При х = l угол поворота сечения равен нулю, поэтому z'(l) = 0.
Из этого условия получаем
,
и уравнение изогнутой оси приобретает следующий вид:
.
Условие z (l) = 0 будет выполнено, если
.
Отсюда
получаем следующее трансцендентное
разрешающее уравнение для определения
величины :
.
Наименьший корень этого уравнения определяет первую критическую силу. Это уравнение решается методом подбора или графически. Наименьший, отличный от нуля, корень этого уравнения l = 4,493 = 1,43.
Принимая l = 1,43, получаем следующее выражение для критической силы
.
(9.5)
Проведя подобный вывод формулы для критической силы применительно к брусу, защемленному с одной стороны (рис. 9.8), получаем следующее выражение:
Рис. 9.6 Рис. 9.7 Рис. 9. 8
.
(9.6)
Сопоставляя формулы критической силы для бруса, закрепленного различным образом, легко видеть, что все они имеют одинаковое строение. Обобщая их, запишем формулу Эйлера в виде:
.
Здесь = 1/n величина, обратная числу полуволн п синусоиды, по которой изогнется брус. Постоянная называется коэффициентом приведения длины, а произведение l – приведенной длиной бруса. Случай шарнирного закрепления концов бруса называется основным.
О
сновные
случаи закрепления концов стержня и
значений коэффициента приведения длины
для них показаны на рис. 9.9.
Таким образом, критическая сила для любого случая закрепления бруса может быть вычислена по формуле для основного случая с заменой действительной длины бруса его приведенной длиной.