Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Все лекции сопромат.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
4.12 Mб
Скачать

8.1. Косой изгиб

Косым изгибом называется вид нагружения, при котором плоскость действия изгибающего момента не проходит ни через одну из главных осей сечения.

Напряжения и перемещения при косом изгибе найдем, используя принцип независимости действия сил. Косой изгиб рассматривается при этом как сочетание двух плоских изгибов во взаимно перпендикулярных плоскостях (рис. 8.1).

Нормальные напряжения в любой точке поперечного сечения могут быть вычислены как алгебраическая сумма напряжений, возникающих от моментов My и Mz:

, (8.1)

где , ;

j – угол отклонения плоскости действия M от вертикали.

Для определения положения опасной точки сечения и записи условия прочности необходимо записать уравнение нейтральной линии (н.л.) как геометрического места точек сечения, в которых напряжения равны нулю.

Уравнение нейтральной линии имеет вид:

, или .

О

D

тсюда следует, что если , то плоскость действия момента М и нейтральная линия не перпендикулярны друг другу (в отличие от плоского изгиба).

Максимального значения в сечении нормальные напряжения достигают в наиболее удаленных от нейтральной линии точках В и D (рис. 8.2).

Эти точки являются опасными в данном сечении.

Условие прочности в т. B имеет вид:

, (8.2)

где zB, yB – координаты точки B.

Для сечений, вписывающихся в прямоугольник (швеллер, двутавр и др.), в

точках с координатами ymax и zmax, условие прочности может быть записано в виде

. (8.3)

Прогиб при косом изгибе определяется как геометрическая сумма проги-

бов вдоль осей и (рис. 8.3) по формуле .

Н аправление прогиба определяется углом

.

Из формулы видно, что направления прогиба балки будет совпадать с плоскостью действия момента при Jz = Jy . Если моменты инерции сечения не равны между собой , то направление прогиба и положение плоскости действия момента не совпадают (рис. 8.3).

8.2. Внецентренное растяжение (сжатие)

8.2.1. Расчет напряжений при внецентренном растяжении (сжатии)

В нецентренным растяжением называется такой вид нагружения бруса, при котором внешние силы действуют вдоль продольной оси бруса, но не совпадают с ней (рис. 8.4). Определение напряжений производится с помощью принципа независимости действия сил. Внецентренное растяжение представляет сочетание осевого растяжения и косого (в частных случаях – плоского) изгиба. Формула для нормальных напряжений может быть получена как алгебраическая сумма нормальных напряжений, возникающих от каждого вида нагружения:

, (8.4)

где ; ;

yF, zF – координаты точки приложения силы F.

Для определения опасных точек сечения необходимо найти положение нейтральной линии (н.л.) как геометрического места точек, в которых напряжения равны нулю.

.

Уравнение н.л. может быть записано как уравнение прямой в отрезках:

,

где и – отрезки, отсекаемые н.л. на осях координат,

, – главные радиусы инерции сечения.

Нейтральная линия разделяет поперечное сечение на зоны с растягивающими и сжимающими напряжениями. Эпюра нормальных напряжений представлена на рис. 8.4.

Если сечение симметрично относительно главных осей, то условие прочности записывается для пластичных материалов, у которых [c] = [p] = [], в виде

. (8.5)

Для хрупких материалов, у которых [c][p], условие прочности следует записывать отдельно для опасной точки сечения в растянутой зоне:

и для опасной точки сечения в сжатой зоне:

,

где z1, y1 и z2, y2 – координаты наиболее удаленных от нейтральной линии точек сечения в растянутой 1 и сжатой 2 зонах сечения (рис. 8.4).